Displaying all 7 publications

Abstract:
Sort:
  1. Adeel M, Zain M, Fahad S, Rizwan M, Ameen A, Yi H, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(36):36712-36723.
    PMID: 30377972 DOI: 10.1007/s11356-018-3588-4
    Since the inception of global industrialization, the growth of steroid estrogens becomes a matter of emerging serious concern for the rapid population. Steroidal estrogens are potent endocrine-upsetting chemicals that are excreted naturally by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Steroidal estrogens in plants may enter the food web and become a serious threat to human health. We evaluated the uptake and accumulation of ethinylestradiol (EE2) and 17β-estradiol (17β-E2) in lettuce plants (Lactuca sativa) grown under controlled environmental condition over 21 days growth period. An effective analytical method based on ultrasonic liquid extraction (ULE) for solid samples and solid phase extraction (SPE) for liquid samples with gas chromatography-mass spectrometry (GC/MS) has been developed to determine the steroid estrogens in lettuce plants. The extent of uptake and accumulation was observed in a dose-dependent manner and roots were major organs for estrogen deposition. Unlike the 17β-E2, EE2 was less accumulated and translocated from root to leaves. For 17β-E2, the distribution in lettuce was primarily to roots after the second week (13%), whereas in leaves it was (10%) over the entire study period. The distribution of EE2 at 2000 μg L-1 in roots and leaves was very low (3.07% and 0.54%) during the first week and then was highest (12% in roots and 8% in leaves) in last week. Bioaccumulation factor values of 17β-E2 and EE2 in roots were 0.33 and 0.29 at 50 μg L-1 concentration as maximum values were found at 50 μg L-1 rather than 500 and 2000 in all observed plant tissues. Similar trend was noticed in roots than leaves for bioconcentration factor as the highest bioconcentration values were observed at 50 μg L-1 concentration instead of 500 and 2000 μg L-1 spiked concentration. These findings mainly indicate the potential for uptake and bioaccumulation of estrogens in lettuce plants. Overall, the estrogen contents in lettuce were compared to the FAO/WHO recommended toxic level and were found to be higher than the toxic level which is of serious concern to the public health. This analytical procedure may aid in future studies on risks associated with uptake of endocrine-disrupting chemicals in lettuce plants.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  2. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  3. Ting YF, Praveena SM
    Environ Monit Assess, 2017 Apr;189(4):178.
    PMID: 28342046 DOI: 10.1007/s10661-017-5890-x
    Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  4. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
    Matched MeSH terms: Ethinyl Estradiol/analysis*
  5. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, et al.
    Chemosphere, 2010 Jan;78(3):286-93.
    PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048
    The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  6. Praveena SM, Lui TS, Hamin N, Razak SQ, Aris AZ
    Environ Monit Assess, 2016 Jul;188(7):442.
    PMID: 27353134 DOI: 10.1007/s10661-016-5438-5
    The occurrence and estrogenic activities of steroid estrogens, such as the natural estrone (E1), 17β estradiol (E2), and estriol (E3), as well as the synthetic 17α-ethynylestradiol (EE2), were investigated in eight sampling points along the Langat River (Malaysia). Surface water samples were collected at 0.5 m and surface sediment 0-5 cm from the river surface. Instrument analysis of steroid estrogens was determined by UPLC-ESI-MS with an ultra-performance liquid chromatograph (Perkin Elmer FX15) coupled to a Q Trap function mass spectrophotometer (model 3200: AB Sciex). Steroid estrogen concentrations were higher in the Langat River sediments than those in its surface water. In surface water, E1 was not detected in any sampling point, E2 was only detected in two midstream sampling points (range 0-0.004 ng/L), E3 in three sampling points (range 0-0.002 ng/L), and EE2 in four sampling points (range 0-0.02 ng/L). E1 and E2 were detected in sediments from all sampling points, E3 in five sampling points, while EE2 only in one midstream sample (3.29E-4 ng/g). Sewage treatment plants, farming waste, and agricultural activities particularly present midstream and downstream were identified as potential sources of estrogens. Estrogenic activity expressed as estradiol equivalents (EEQs) was below 1 ng/L in all samples for both surface water and sediment, indicating therefore a low potential estrogenic risk to the aquatic environment. Although the health risks are still uncertain for drinking water consumers exposed to low levels of steroid estrogen concentrations, Langat River water is unacceptable for direct drinking purposes without treatment. Further studies of endocrine disruptors in Malaysian waters are highly recommended.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  7. Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ
    Environ Pollut, 2024 Jan 15;341:122980.
    PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980
    The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
    Matched MeSH terms: Ethinyl Estradiol/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links