Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Lam SS, Ma NL, Peng W, Sonne C
    Science, 2020 May 29;368(6494):958.
    PMID: 32467384 DOI: 10.1126/science.abc2202
    Matched MeSH terms: Extinction, Biological*
  2. Simpfendorfer CA, Heithaus MR, Heupel MR, MacNeil MA, Meekan M, Harvey E, et al.
    Science, 2023 Jun 16;380(6650):1155-1160.
    PMID: 37319199 DOI: 10.1126/science.ade4884
    A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.
    Matched MeSH terms: Extinction, Biological*
  3. Moleón M, Sánchez-Zapata JA, Donázar JA, Revilla E, Martín-López B, Gutiérrez-Cánovas C, et al.
    Proc Biol Sci, 2020 03 11;287(1922):20192643.
    PMID: 32126954 DOI: 10.1098/rspb.2019.2643
    Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
    Matched MeSH terms: Extinction, Biological
  4. Deith MCM, Brodie JF
    Proc Biol Sci, 2020 03 11;287(1922):20192677.
    PMID: 32156211 DOI: 10.1098/rspb.2019.2677
    Unsustainable hunting is emptying forests of large animals around the world, but current understanding of how human foraging spreads across landscapes has been stymied by data deficiencies and cryptic hunter behaviour. Unlike other global threats to biodiversity like deforestation, climate change and overfishing, maps of wild meat hunters' movements-often based on forest accessibility-typically cover small scales and are rarely validated with real-world observations. Using camera trapping data from rainforests across Malaysian Borneo, we show that while hunter movements are strongly correlated with the accessibility of different parts of the landscape, accessibility measures are most informative when they integrate fine-scale habitat features like topography and land cover. Measures of accessibility naive to fine-scale habitat complexity, like distance to the nearest road or settlement, generate poor approximations of hunters' movements. In comparison, accessibility as measured by high-resolution movement models based on circuit theory provides vastly better reflections of real-world foraging movements. Our results highlight that simple models incorporating fine-scale landscape heterogeneity can be powerful tools for understanding and predicting widespread threats to biodiversity.
    Matched MeSH terms: Extinction, Biological*
  5. Chisholm RA, Kristensen NP, Rheindt FE, Chong KY, Ascher JS, Lim KKP, et al.
    Proc Natl Acad Sci U S A, 2023 Dec 19;120(51):e2309034120.
    PMID: 38079550 DOI: 10.1073/pnas.2309034120
    There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.
    Matched MeSH terms: Extinction, Biological
  6. Heinrichs J, Scheben A, Bechteler J, Lee GE, Schäfer-Verwimp A, Hedenäs L, et al.
    PLoS One, 2016;11(5):e0156301.
    PMID: 27244582 DOI: 10.1371/journal.pone.0156301
    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.
    Matched MeSH terms: Extinction, Biological
  7. Rodrigues AS, Brooks TM, Butchart SH, Chanson J, Cox N, Hoffmann M, et al.
    PLoS One, 2014;9(11):e113934.
    PMID: 25426636 DOI: 10.1371/journal.pone.0113934
    The world's governments have committed to preventing the extinction of threatened species and improving their conservation status by 2020. However, biodiversity is not evenly distributed across space, and neither are the drivers of its decline, and so different regions face very different challenges. Here, we quantify the contribution of regions and countries towards recent global trends in vertebrate conservation status (as measured by the Red List Index), to guide action towards the 2020 target. We found that>50% of the global deterioration in the conservation status of birds, mammals and amphibians is concentrated in <1% of the surface area, 39/1098 ecoregions (4%) and eight/195 countries (4%) - Australia, China, Colombia, Ecuador, Indonesia, Malaysia, Mexico, and the United States. These countries hold a third of global diversity in these vertebrate groups, partially explaining why they concentrate most of the losses. Yet, other megadiverse countries - most notably Brazil (responsible for 10% of species but just 1% of deterioration), plus India and Madagascar - performed better in conserving their share of global vertebrate diversity. Very few countries, mostly island nations (e.g. Cook Islands, Fiji, Mauritius, Seychelles, and Tonga), have achieved net improvements. Per capita wealth does not explain these patterns, with two of the richest countries - United States and Australia - fairing conspicuously poorly. Different countries were affected by different combinations of threats. Reducing global rates of biodiversity loss will require investment in the regions and countries with the highest responsibility for the world's biodiversity, focusing on conserving those species and areas most in peril and on reducing the drivers with the highest impacts.
    Matched MeSH terms: Extinction, Biological*
  8. Clements GR, Lynam AJ, Gaveau D, Yap WL, Lhota S, Goosem M, et al.
    PLoS One, 2014;9(12):e115376.
    PMID: 25521297 DOI: 10.1371/journal.pone.0115376
    Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
    Matched MeSH terms: Extinction, Biological
  9. Wilting A, Cord A, Hearn AJ, Hesse D, Mohamed A, Traeholdt C, et al.
    PLoS One, 2010;5(3):e9612.
    PMID: 20305809 DOI: 10.1371/journal.pone.0009612
    The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat.
    Matched MeSH terms: Extinction, Biological
  10. Hill JK, Gray MA, Khen CV, Benedick S, Tawatao N, Hamer KC
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3265-76.
    PMID: 22006967 DOI: 10.1098/rstb.2011.0050
    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.
    Matched MeSH terms: Extinction, Biological
  11. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
    Matched MeSH terms: Extinction, Biological
  12. Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, et al.
    Nature, 2023 Oct;622(7982):308-314.
    PMID: 37794184 DOI: 10.1038/s41586-023-06578-4
    Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.
    Matched MeSH terms: Extinction, Biological
  13. Draisma SG, van Reine WF, Sauvage T, Belton GS, Gurgel CF, Lim PE, et al.
    J Phycol, 2014 Dec;50(6):1020-34.
    PMID: 26988784 DOI: 10.1111/jpy.12231
    The siphonous green algal family Caulerpaceae includes the monotypic genus Caulerpella and the species-rich genus Caulerpa. A molecular phylogeny was inferred from chloroplast tufA and rbcL DNA sequences analyzed together with a five marker dataset of non-caulerpacean siphonous green algae. Six Caulerpaceae lineages were revealed, but relationships between them remained largely unresolved. A Caulerpella clade representing multiple cryptic species was nested within the genus Caulerpa. Therefore, that genus is subsumed and Caulerpa ambigua Okamura is reinstated. Caulerpa subgenus status is proposed for the six lineages substantiated by morphological characters, viz., three monotypic subgenera Cliftonii, Hedleyi, and Caulerpella, subgenus Araucarioideae exhibiting stolons covered with scale-like appendages, subgenus Charoideae characterized by a verticillate branching mode, and subgenus Caulerpa for a clade regarded as the Caulerpa core clade. The latter subgenus is subdivided in two sections, i.e., Sedoideae for species with pyrenoids and a species-rich section Caulerpa. A single section with the same name is proposed for each of the other five subgenera. In addition, species status is proposed for Caulerpa filicoides var. andamanensis (W.R. Taylor). All Caulerpa species without sequence data were examined (or data were taken from species descriptions) and classified in the new classification scheme. A temporal framework of Caulerpa diversification is provided by calibrating the phylogeny in geological time. The chronogram suggests that Caulerpa diversified into subgenera and sections after the Triassic-Jurassic mass extinction and that infra-section species radiation happened after the Cretaceous-Tertiary mass extinction.
    Matched MeSH terms: Extinction, Biological
  14. Chong VC, Lee PK, Lau CM
    J Fish Biol, 2010 Jun;76(9):2009-66.
    PMID: 20557654 DOI: 10.1111/j.1095-8649.2010.02685.x
    A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine-euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna.
    Matched MeSH terms: Extinction, Biological*
  15. Ali ME, Asing, Hamid SB, Razzak MA, Rashid NR, Al Amin M, et al.
    PMID: 26062948 DOI: 10.1080/19440049.2015.1058535
    Malayan box turtle (Cuora amboinensis) has been a wildlife-protected vulnerable turtle species in Malaysia since 2005. However, because of its purported usage in traditional medicine, tonic foods and feeds, clandestine black market trade is rampant. Several polymerase chain reaction (PCR) assays for the taxonomic detection and classification of turtle species have been proposed. These assays are based on long-length target amplicons which are assumed to break down under compromised states and, hence, might not be suitable for the forensic tracing and tracking of turtle trafficking. For the first time this paper develops a very short-amplicon-length PCR assay (120 bp) for the detection of Malayan box turtle meat in raw, processed and mixed matrices, and experimental evidence is produced that such an assay is not only more stable and reliable but also more sensitive than those previously published. We checked the assay specificity against 20 different species and no cross-species detection was observed. The possibility of any false-negative detection was eliminated by a universal endogenous control for eukaryotes. The assay detection limit was 0.0001 ng of box turtle DNA from pure meat and 0.01% turtle meat in binary and ternary admixtures and commercial meatballs. Superior target stability and sensitivity under extreme treatments of boiling, autoclaving and microwave cooking suggested that this newly developed assay would be suitable for any forensic and/or archaeological identification of Malayan box turtle species, even in severely degraded specimens. Further, in silico studies indicated that the assay has the potential to be used as a universal probe for the detection of nine Cuora species, all of which are critically endangered.
    Matched MeSH terms: Extinction, Biological
  16. Welch AR
    Folia Primatol., 2019;90(4):258-266.
    PMID: 31129672 DOI: 10.1159/000499655
    Several slow loris (Nycticebus) sightings have occurred on the island of Pulau Tioman, Peninsular Malaysia, from 2011 to 2018. Records discussed here represent the first confirmed sightings and photographic evidence of Nycticebus on Tioman since its discovery in 1915, refuting presumptions that the Tioman slow loris is extinct. Although originally considered a subspecies of the Sunda slow loris (Nycticebus coucang), several morphological characteristics apparent in all observed individuals, including the white interocular stripe, rufous colouration and pale dorsal stripe, are similar to the Philippine slow loris (Nycticebus menagensis). Further, the broad snout and ears may be unique to this population and suggest that the population may be distinct. I, therefore, recommend that future studies consider the taxonomic status of remote and isolated Nycticebus populations given the possibility that they may represent distinct and unrecognised taxa.
    Matched MeSH terms: Extinction, Biological
  17. Segura AM, Calliari D, Lan BL, Fort H, Widdicombe CE, Harmer R, et al.
    Ecol Lett, 2017 04;20(4):471-476.
    PMID: 28239940 DOI: 10.1111/ele.12749
    Determining statistical patterns irrespective of interacting agents (i.e. macroecology) is useful to explore the mechanisms driving population fluctuations and extinctions in natural food webs. Here, we tested four predictions of a neutral model on the distribution of community fluctuations (CF) and the distributions of persistence times (APT). Novel predictions for the food web were generated by combining (1) body size-density scaling, (2) Taylor's law and (3) low efficiency of trophic transference. Predictions were evaluated on an exceptional data set of plankton with 15 years of weekly samples encompassing c. 250 planktonic species from three trophic levels, sampled in the western English Channel. Highly symmetric non-Gaussian distributions of CF support zero-sum dynamics. Variability in CF decreased while a change from an exponential to a power law distribution of APT from basal to upper trophic positions was detected. Results suggest a predictable but profound effect of trophic position on fluctuations and extinction in natural communities.
    Matched MeSH terms: Extinction, Biological*
  18. Juergens J, Bruslund S, Staerk J, Oegelund Nielsen R, Shepherd CR, Leupen B, et al.
    Data Brief, 2021 Jun;36:107093.
    PMID: 34041313 DOI: 10.1016/j.dib.2021.107093
    In this article we present a standardized dataset on 6659 songbirds (Passeriformes) highlighting information relevant to species conservation prioritization with a main focus to support the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Data were collected from both scientific and grey literature as well as several online databases. The data are structured into six knowledge categories: Conventions and Treaties, Human Use, Extinction Risk, Management Opportunities, Biological Information, and Intrinsic Values. The Conventions and Treaties category includes the listings for two international conventions, CITES and the Convention on the Conservation of Migratory Species of Wild Animals (CMS), as well as EU listings for the EU Wildlife Trade Regulations and the EU Birds Directive. The Human Use category contains information on both regulated trade collected from the CITES Trade Database and the United States' Law Enforcement Management Information System (LEMIS), and highly aggregated data on seizures which we obtained from TRAFFIC, the United Nations Office on Drugs and Crime (UNODC) and two data sources on traditional medicine. We also present, for the first time, the complete Songbirds in Trade Database (SiTDB), a trade database curated by taxon expert S. Bruslund based on expert knowledge, literature review, market surveys and sale announcements. Data on the types of human use, including traditional medicine are also provided. The knowledge area on Extinction Risk contains data on the species' IUCN Red List status, the Alliance for Zero Extinction Trigger Species status, site and population at the site, the species' IUCN Climate Change Vulnerability Assessment, and the listing of priority species at the Asian Songbird Crisis Summit. In the Management Opportunities category, we gathered data on ex-situ management from Species360 zoo holdings as well as species management plans from the European and North American Zoo Associations (EAZA and AZA, respectively). Biological Information includes data on body mass, clutch size, diet, availability of data from the IUCN Red List on habitat systems, extent of occurrence, generation length, migration pattern, distribution, and biological data from the Demographic Species Knowledge Index, number of occurrences recorded by the Global Biodiversity Information Facility (GBIF) as well as genomic data from the Bird 10 000K Genomes (B10K) project, Vertebrate Genome Project (VGP) and GenBank. Information on invasive species is also part of this knowledge area. The Intrinsic Value category refers to two measures of the species' intrinsic value, namely Ecological and Evolutionary Distinctiveness. In order to make these knowledge areas comparable, we standardized data following the taxonomy of the Handbook of the Birds of the World and Birdlife (Version 4, 2019). The data enable a broad spectrum of analyses and will be useful to scientists for further research and to policymakers, zoos and other conservation stakeholders for future prioritization decisions.
    Matched MeSH terms: Extinction, Biological
  19. Williams N
    Curr Biol, 2007 Apr 17;17(8):R261.
    PMID: 17486700
    Matched MeSH terms: Extinction, Biological*
  20. Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, et al.
    Curr Biol, 2020 10 05;30(19):3871-3879.e7.
    PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
    Matched MeSH terms: Extinction, Biological
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links