Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. 'Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM
    Molecules, 2023 Mar 14;28(6).
    PMID: 36985603 DOI: 10.3390/molecules28062631
    The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
    Matched MeSH terms: Food Industry
  2. Garton K, Kraak V, Fanzo J, Sacks G, Vandevijvere S, Haddad L, et al.
    Public Health Nutr, 2022 Sep;25(9):2353-2357.
    PMID: 35570707 DOI: 10.1017/S1368980022001173
    There is widespread agreement among experts that a fundamental reorientation of global, regional, national and local food systems is needed to achieve the UN Sustainable Development Goals Agenda and address the linked challenges of undernutrition, obesity and climate change described as the Global Syndemic. Recognising the urgency of this imperative, a wide range of global stakeholders - governments, civil society, academia, agri-food industry, business leaders and donors - convened at the September 2021 UN Food Systems Summit to coordinate numerous statements, commitments and declarations for action to transform food systems. As the dust settles, how will they be pieced together, how will governments and food corporations be held to account and by whom? New data, analytical methods and global coalitions have created an opportunity and a need for those working in food systems monitoring to scale up and connect their efforts in order to inform and strengthen accountability actions for food systems. To this end, we present - and encourage stakeholders to join or support - an Accountability Pact to catalyse an evidence-informed transformation of current food systems to promote human and ecological health and wellbeing, social equity and economic prosperity.
    Matched MeSH terms: Food Industry/methods
  3. Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, et al.
    Bioresour Technol, 2022 Jan;343:126065.
    PMID: 34624472 DOI: 10.1016/j.biortech.2021.126065
    The increase in solid waste has become a common problem and causes environmental pollution worldwide. A green approach to valorise solid waste for sustainable development is required. Agricultural residues are considered suitable for conversion into profitable products through solid-state fermentation (SSF). Agricultural wastes have high organic content that is used as potential substrates to produce value-added products through SSF. The importance of process variables used in solid-phase fermentation is described. The applications of SSF developed products in the food industry as flavouring agents, acidifiers, preservatives and flavour enhancers. SSF produces secondary metabolites and essential enzymes. Wastes from agricultural residues are used as bioremediation agents, biofuels and biocontrol agents through microbial processing. In this review paper, the value addition of agricultural wastes by SSF through green processing is discussed with the current knowledge on the scenarios, sustainability opportunities and future directions of a circular economy for solid waste utilisation.
    Matched MeSH terms: Food Industry
  4. So AD, Shah TA, Roach S, Ling Chee Y, Nachman KE
    J Law Med Ethics, 2015;43 Suppl 3:38-45.
    PMID: 26243242 DOI: 10.1111/jlme.12273
    The growing demand for animal products and the widespread use of antibiotics in bringing food animals to market have heightened concerns over cross-species transmission of drug resistance. Both the biology and emerging epidemiology strongly support the need for global coordination in stemming the generation and propagation of resistance, and the patchwork of global and country-level regulations still leaves significant gaps. More importantly, discussing such a framework opens the door to taking modular steps towards solving these challenges - for example, beginning among targeted parties rather than all countries, tying accountability to financial and technical support, or taxing antibiotic use in animals to deter low-value usage of these drugs. An international agreement would allow integrating surveillance data collection, monitoring and enforcement, research into antibiotic alternatives and more sustainable approaches to agriculture, technical assistance and capacity building, and financing under the umbrella of a One Health approach.
    Matched MeSH terms: Food Industry
  5. Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, et al.
    Nanoscale Res Lett, 2014 Jan 15;9(1):33.
    PMID: 24428818 DOI: 10.1186/1556-276X-9-33
    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.
    Matched MeSH terms: Food Industry
  6. Modarresi Chahardehi A, Ibrahim D, Fariza Sulaiman S
    Int J Microbiol, 2010;2010:826830.
    PMID: 20652052 DOI: 10.1155/2010/826830
    A total of 9 plant extracts were tested, using two different kinds of extracting methods to evaluate the antioxidant and antimicrobial activities from Pilea microphylla (Urticaceae family) and including toxicity test. Antioxidant activity were tested by using DPPH free radical scavenging, also total phenolic contents and total flavonoid contents were determined. Toxicity assay carried out by using brine shrimps. Methanol extract of method I (ME I) showed the highest antioxidant activity at 69.51 +/- 1.03. Chloroform extract of method I (CE I) showed the highest total phenolic contents at 72.10 +/- 0.71 and chloroform extract of method II (CE II) showed the highest total flavonoid contents at 60.14 +/- 0.33. The antimicrobial activity of Pilea microphylla extract was tested in vitro by using disc diffusion method and minimum inhibitory concentration (MIC). The Pilea microphylla extract showed antibacterial activity against some Gram negative and positive bacteria. The extracts did not exhibit antifungal and antiyeast activity. The hexane extract of method I (HE I) was not toxic against brine shrimp (LC50 value was 3880 mug/ml). Therefore, the extracts could be suitable as antimicrobial and antioxidative agents in food industry.
    Matched MeSH terms: Food Industry
  7. Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Abdulkarim, S.M., Son, R., Marian, M.N.
    MyJurnal
    Listeria monocytogenes (L. monocytogenes) is a serious food-borne pathogen for immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments. The biofilm transfers contamination to food products and impose risk to public health. Transfers contamination to food products, and impose risk hazard to public health. The aim of this study was to investigate biofilm producing ability of L. monocytogenes isolates. Microtitre assay was used to measure the amount of biofilm production by ten L. monocytogenes isolates from minced chicken / meat, sausages and burgers. Results showed that all 10 L. monocytogenes isolates were able to form biofilm after 24 h at 20˚C on polystyrene surface (the common surface in food industries). Some strains were capable of forming biofilm more than the others. All strains showed a slight raise in the quantities of attached cells over 48 and 72 h. L. monocytogenes strains isolated from minced chicken, minced meat and burgers were better biofilm-producers comparing to the strains isolated from sausages.
    Matched MeSH terms: Food Industry
  8. Sacks G, Vanderlee L, Robinson E, Vandevijvere S, Cameron AJ, Ni Mhurchu C, et al.
    Obes Rev, 2019 11;20 Suppl 2:78-89.
    PMID: 31317645 DOI: 10.1111/obr.12878
    Addressing obesity and improving the diets of populations requires a comprehensive societal response. The need for broad-based action has led to a focus on accountability of the key factors that influence food environments, including the food and beverage industry. This paper describes the Business Impact Assessment-Obesity and population-level nutrition (BIA-Obesity) tool and process for benchmarking food and beverage company policies and practices related to obesity and population-level nutrition at the national level. The methods for BIA-Obesity draw largely from relevant components of the Access to Nutrition Index (ATNI), with specific assessment criteria developed for food and nonalcoholic beverage manufacturers, supermarkets, and chain restaurants, based on international recommendations and evidence of best practices related to each sector. The process for implementing the BIA-Obesity tool involves independent civil society organisations selecting the most prominent food and beverage companies in each country, engaging with the companies to understand their policies and practices, and assessing each company's policies and practices across six domains. The domains include: "corporate strategy," "product formulation," "nutrition labelling," "product and brand promotion," "product accessibility," and "relationships with other organisations." Assessment of company policies is based on their level of transparency, comprehensiveness, and specificity, with reference to best practice.
    Matched MeSH terms: Food Industry/standards*
  9. Thung, T.Y., Lee, E., Tan, C.W., Malcolm, T.T.H., New, C.Y., Ramzi, O.S.B., et al.
    Food Research, 2018;2(5):404-414.
    MyJurnal
    Bacteriophages are ubiquitous in our world, mainly in the oceans, soil, the water and food
    we consume. They can be used efficiently in modern biotechnology, as well as alternatives
    to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as vehicles
    for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as biocontrol
    agents in agriculture and food industry. This review outlines the properties as well
    as the influence of different external physical and chemical factors like temperature and
    acidity on phage persistence. A better understanding of the complex problem of phage
    sensitivity to external factors may be useful for other researchers working with phages.
    Furthermore, the applications of bacteriophages were described in this paper as well.
    Matched MeSH terms: Food Industry
  10. Padam BS, Tin HS, Chye FY, Abdullah MI
    J Food Sci Technol, 2014 Dec;51(12):3527-45.
    PMID: 25477622 DOI: 10.1007/s13197-012-0861-2
    Banana (Musaceae) is one of the world's most important fruit crops that is widely cultivated in tropical countries for its valuable applications in food industry. Its enormous by-products are an excellent source of highly valuable raw materials for other industries by recycling agricultural waste. This prevents an ultimate loss of huge amount of untapped biomass and environmental issues. This review discusses extensively the breakthrough in the utilization of banana by-products such as peels, leaves, pseudostem, stalk and inflorescence in various food and non-food applications serving as thickening agent, coloring and flavor, alternative source for macro and micronutrients, nutraceuticals, livestock feed, natural fibers, and sources of natural bioactive compounds and bio-fertilizers. Future prospects and challenges are the important key factors discussed in association to the sustainability and feasibility of utilizing these by-products. It is important that all available by-products be turned into highly commercial outputs in order to sustain this renewable resource and provide additional income to small scale farming industries without compromising its quality and safety in competing with other commercial products.
    Matched MeSH terms: Food Industry
  11. Ng S, Sacks G, Kelly B, Yeatman H, Robinson E, Swinburn B, et al.
    Global Health, 2020 04 17;16(1):35.
    PMID: 32303243 DOI: 10.1186/s12992-020-00560-9
    BACKGROUND: The aim of this study was to assess the commitments of food companies in Malaysia to improving population nutrition using the Business Impact Assessment on population nutrition and obesity (BIA-Obesity) tool and process, and proposing recommendations for industry action in line with government priorities and international norms.

    METHODS: BIA-Obesity good practice indicators for food industry commitments across a range of domains (n = 6) were adapted to the Malaysian context. Euromonitor market share data was used to identify major food and non-alcoholic beverage manufacturers (n = 22), quick service restaurants (5), and retailers (6) for inclusion in the assessment. Evidence of commitments, including from national and international entities, were compiled from publicly available information for each company published between 2014 and 2017. Companies were invited to review their gathered evidence and provide further information wherever available. A qualified Expert Panel (≥5 members for each domain) assessed commitments and disclosures collected against the BIA-Obesity scoring criteria. Weighted scores across domains were added and the derived percentage was used to rank companies. A Review Panel, comprising of the Expert Panel and additional government officials (n = 13), then formulated recommendations.

    RESULTS: Of the 33 selected companies, 6 participating companies agreed to provide more information. The median overall BIA-Obesity score was 11% across food industry sectors with only 8/33 companies achieving a score of > 25%. Participating (p foods.

    CONCLUSIONS: This is the first BIA-Obesity study to benchmark the population nutrition commitments of major food companies in Asia. Commitments of companies were generally vague and non-specific. In the absence of strong government regulation, an accountability framework, such as provided by the BIA-Obesity, is essential to monitor and benchmark company action to improve population nutrition.

    Matched MeSH terms: Food Industry/legislation & jurisprudence; Food Industry/organization & administration; Food Industry/statistics & numerical data*
  12. Kristanti, R.A., Hadibarata, T., Punbusayakul, N.
    MyJurnal
    Natural preservatives having the great antioxidant and antimicrobial activity have been utilized in the food industry for many years. In the present study, the effect of of two brands of commercial Assam green tea infusion (represented by A and B) and 0.02% BHA/BHT on microbial growth, anti-lipid oxidation and color change were investigated in cooked beef. The green tea concentration has influenced to the results. It was found that A and B at the concentration of 250 mg/mL significantly reduced the population of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and E. coli in the cooked beef to an undetectable level within 2 days of storage at 4oC. A and B also exhibited higher anti-lipid oxidation activity compared to 0.02% BHA/BHT, and control. Assam green tea infusions in cooked beef significantly increased ∆ L*
    value and decreased ∆ a* and ∆ b* value (p ≤ 0.05). These indicate that Assam green tea infusion might be a potential candidate as a natural preservative for beef and other types of food.
    Matched MeSH terms: Food Industry
  13. Chan SK, Lim TS
    Appl Microbiol Biotechnol, 2019 Apr;103(7):2973-2984.
    PMID: 30805670 DOI: 10.1007/s00253-019-09669-3
    Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
    Matched MeSH terms: Food Industry
  14. Baker P, Zambrano P, Mathisen R, Singh-Vergeire MR, Escober AE, Mialon M, et al.
    Global Health, 2021 10 26;17(1):125.
    PMID: 34702285 DOI: 10.1186/s12992-021-00774-5
    BACKGROUND: The aggressive marketing of breastmilk substitutes (BMS) reduces breastfeeding, and harms child and maternal health globally. Yet forty years after the World Health Assembly adopted the International Code of Marketing of Breast-milk Substitutes (The Code), many countries are still to fully implement its provisions into national law. Furthermore, despite The Code, commercial milk formula (CMF) markets have markedly expanded. In this paper, we adopt the Philippines as a case study to understand the battle for national Code implementation. In particular, we investigate the market and political strategies used by the baby food industry to shape the country's 'first-food system', and in doing so, promote and sustain CMF consumption. We further investigate how breastfeeding coalitions and advocates have resisted these strategies, and generated political commitment for a world-leading breastfeeding policy framework and protection law (the 'Milk Code'). We used a case study design and process tracing method, drawing from documentary and interview data.

    RESULTS: The decline in breastfeeding in the Philippines in the mid-twentieth Century associated with intensive BMS marketing via health systems and consumer advertising. As regulations tightened, the industry more aggressively promoted CMFs for older infants and young children, thereby 'marketing around' the Milk Code. It established front groups to implement political strategies intended to weaken the country's breastfeeding policy framework while also fostering a favourable image. This included lobbying government officials and international organizations, emphasising its economic importance and threats to foreign investment and trade, direct litigation against the government, messaging that framed marketing in terms of women's choice and empowerment, and forging partnerships. A resurgence in breastfeeding from the mid-1980s onwards reflected strengthening political commitment for a national breastfeeding policy framework and Milk Code, resulting in-turn, from collective actions by breastfeeding coalitions, advocates and mothers.

    CONCLUSION: The Philippines illustrates the continuing battle for worldwide Code implementation, and in particular, how the baby food industry uses and adapts its market and political practices to promote and sustain CMF markets. Our results demonstrate that this industry's political practices require much greater scrutiny. Furthermore, that mobilizing breastfeeding coalitions, advocacy groups and mothers is crucial to continually strengthen and protect national breastfeeding policy frameworks and Code implementation.

    Matched MeSH terms: Food Industry
  15. Babji, A.S., Ghassem, M., Hong, P.K., Maizatul, S.M.S.
    ASM Science Journal, 2012;6(2):144-147.
    MyJurnal
    Research and development trends will continue to design innovative composite foods in which muscle proteins are combined with non-conventional animal products, non-meat proteins and functional food additives, many of which have lost their original inherent properties and characteristics. Composite food are products with meat, non-meat proteins, fats, carbohydrates and functional ingredients such as pre-emulsion, probiotics, enzymes, bioactives, peptides, hormones, emulsifiers, gelatin, animal fats/oils, alcohol and visceral tissues. Traceability of halal meat raw materials should start at the point of animal breeding, production to the stage of halal slaughter, processing operations and final point of consumption. Traceability of food additives used in the food industry remains a major hurdle for the Muslim community seeking halal food. The processes and technological advancements made in raw material processing, ingredient extractions, modifications, purification and resynthesized into many food ingredients make the question of traceability and solving of the materials and processes that are halal a monumental task. Food is only halal if the entire food chain from farm to table, is processed, handled and stored in accordance with the syariah and/or halal standards or guidelines, such as in the Jabatan Kemajuan Islam Malaysia (JAKIM): General guidelines, Malaysia Standards MS 1500:2009 and Codex Alimentarius (Food Labeling). Here lies the challenge and importance of traceability to verify the ‘wholesomeness’ of the sources of halal raw materials and final meat-based food products.
    Matched MeSH terms: Food Industry
  16. Normah, I., Nur Anati, J.
    MyJurnal
    Threadfin bream (Nemipterus japonicas) muscle was hydrolysed using protease extracted from
    bilimbi (Averrhoa bilimbi L.) fruit. This study was performed in order to compare the efficiency of bilimbi protease in producing threadfin bream protein hydrolysate with the commercial protease; alcalase 2.4 L. Initially, protease was extracted and then purified using 40% ammonium sulfate precipitation method. The proteolytic activity of the crude extract and purified protease was determined. Precipitation using 40% ammonium sulfate resulted in bilimbi protease specific activity of 2.36 U/mg and 23.13% recovery. Threadfin bream hydrolysate was prepared based on the pH-stat method by hydrolysis for 2 hrs. Hydrolysis using bilimbi protease produced 34.76% degree of hydrolysis (DH) and 3.75% yield while hydrolysis using alcalase resulted in 86.6% DH with 22.78% yield. Alcalase hydrolysate showed higher solubility than bilimbi protease hydrolysate at pH 7 with 70.87 and 32.16% solubility, respectively. Results also showed that protein content of threadfin bream hydrolysate produced using alcalase was higher (86.86%) than those produced using bilimbi protease (22.12%). However, both hydrolysates showed low moisture content between 3.93 to 7.00%. The molecular weight distribution analysis using SDS–PAGE indicated the distribution of smaller peptides especially in alcalase hydrolysate. Overall, the results showed that alcalase is more efficient enzyme choice than bilimbi protease for preparing threadfin bream hydrolysates. However, both hydrolysates could play an important role thus contribute to the food industry.
    Matched MeSH terms: Food Industry
  17. Pati S, Jena P, Shahimi S, Nelson BR, Acharya D, Dash BP, et al.
    Data Brief, 2020 Oct;32:106081.
    PMID: 32775581 DOI: 10.1016/j.dib.2020.106081
    This dataset presents morphological features, elemental composition and functional groups of different pre- and post-gamma (γ)-irradiated chitosan (10kGy & 20kGy) prepared from shrimp waste. The γ-irradiated chitosan was characterized using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. Thermogravimetry/differential thermal analysis (TG/DTA) were performed using Perkin Elmer Pyris Diamond DSC with a heating rate of 10 °C/minute and dynamic synthetic atmospheric air set at flow rate of 100 ml/minute. We observed γ-irradiated chitosan to have shorter polymer size, small pores and compacted structure with active alkyl and hydroxyl groups when compared to non-irradiated chitosan. Our data provides baseline understanding for structure of shrimp chitosan after 60Co exposure which means, the biopolymer becomes more stable and is considered suitable for vast food industry applications.
    Matched MeSH terms: Food Industry
  18. Hashim, P., Mohd Ridzwan, M.S., Bakar, J., Mat Hashim, D.
    MyJurnal
    This paper reviews the structure, function and applications of collagens in food industry. Collagen is the most abundant protein in animal origin. It helps maintaining the structure of various tissues and organs. It is a modern foodstuff and widely used in food and beverage industries to improve the elasticity, consistency and stability of products. Furthermore, it also enhances the quality, nutritional and health value of the products. Collagen has been applied as protein dietary supplements, carriers, food additive, edible film and coatings. Therefore, this paper will review the functions and applications of collagen in the food and beverage industries. The structure and composition of collagen are also included.
    Matched MeSH terms: Food Industry
  19. Nazaruddin, R., Noor Baiti, A.A., Foo, S.C., Tan, Y.N., Ayob, M.K.
    MyJurnal
    Recent research suggesting the existence of potential source of pectin from roselle calyces. Pectin was successfully extracted from seven different varieties of roselle calyces. Pectin extraction was conducted using hydrochloric acid (HCl, 0.03 N, pH 1.5) or ammonium oxalate (0.25% w/v, pH 4.6) at 85⁰C for 1 h. Chemical characteristics of the HCl- and ammonium oxalate extracted pectin were compared. Results indicated that ammonium oxalate exhibited greater efficiency in pectin extraction than HCl. Highest pectin yield at 18.7% was obtained by ammonium oxalate extraction of roselle calyx variety Acc.6 compared to only 9.77% by HCl extraction. The lowest pectin yield at 11.3% and 5.78% were observed respectively in ammonium oxalate and HCl extractions of roselle calyx variety UKMR-3. Some important characteristics of ammonium oxalate extracted pectin of roselle Acc.6 were 5.98% moisture, 3.81% ash, 4.64% methoxyl content, 42.24% anhydrouronic acid (AUA) and degree of esterification (DE) 60%. This study suggested that the high DE% roselle pectin is an alternative source of pectin for food industry.
    Matched MeSH terms: Food Industry
  20. Thomas, R., Bhat, Rajeev, Kuang, Y.T.
    MyJurnal
    In this study, three popular, regionally grown rice varieties (Bario, brown and white) were compared with three of the most popular and highly marketed imported rice varieties (black, glutinous and basmati rice) in Penang region of Malaysia. Rice samples were evaluated for amino acids, fatty acids, minerals, heavy metals and dietary fiber composition. Overall, amino acids content among all the rice samples were comparable to each other. Results with regard to minerals showed potassium to be high in brown rice (197.41 mg/100g), while magnesium was recorded to be high in black rice (107.21 mg/100g). Heavy metals such as cadmium, nickel, mercury and lead, though present, they were in negligible amounts. Among all the rice varieties investigated, the total saturated fatty acid and unsaturated fatty acid content was highest in black rice (5.89%). The soluble dietary fiber was higher in white rice (16.39%), whereas insoluble dietary fiber was high in brown (16.51%) and black rice (14.49%), respectively. Results generated from this study is anticipated to benefit both the health wary consumers (based on their potential nutritional attributes) as well as the local food industries to choose the best rice variety while developing novel rice based food products.
    Matched MeSH terms: Food Industry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links