Displaying publications 1 - 20 of 101 in total

Abstract:
Sort:
  1. Babji, A.S., Ghassem, M., Hong, P.K., Maizatul, S.M.S.
    ASM Science Journal, 2012;6(2):144-147.
    MyJurnal
    Research and development trends will continue to design innovative composite foods in which muscle proteins are combined with non-conventional animal products, non-meat proteins and functional food additives, many of which have lost their original inherent properties and characteristics. Composite food are products with meat, non-meat proteins, fats, carbohydrates and functional ingredients such as pre-emulsion, probiotics, enzymes, bioactives, peptides, hormones, emulsifiers, gelatin, animal fats/oils, alcohol and visceral tissues. Traceability of halal meat raw materials should start at the point of animal breeding, production to the stage of halal slaughter, processing operations and final point of consumption. Traceability of food additives used in the food industry remains a major hurdle for the Muslim community seeking halal food. The processes and technological advancements made in raw material processing, ingredient extractions, modifications, purification and resynthesized into many food ingredients make the question of traceability and solving of the materials and processes that are halal a monumental task. Food is only halal if the entire food chain from farm to table, is processed, handled and stored in accordance with the syariah and/or halal standards or guidelines, such as in the Jabatan Kemajuan Islam Malaysia (JAKIM): General guidelines, Malaysia Standards MS 1500:2009 and Codex Alimentarius (Food Labeling). Here lies the challenge and importance of traceability to verify the ‘wholesomeness’ of the sources of halal raw materials and final meat-based food products.
    Matched MeSH terms: Food Industry
  2. Chan SK, Lim TS
    Appl Microbiol Biotechnol, 2019 Apr;103(7):2973-2984.
    PMID: 30805670 DOI: 10.1007/s00253-019-09669-3
    Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
    Matched MeSH terms: Food Industry
  3. Karupaiah T, Chinna K, Mee LH, Mei LS, Noor MI
    Asia Pac J Clin Nutr, 2008;17(3):483-91.
    PMID: 18818170
    The Malaysian government recently introduced a ban on fast food advertisements targeting children on television. This study reports on data covering 6 months of television food advertising targeting children. Six out of seven of the Nation's commercial television networks participated (response rate = 85.7%). Based on reported timings of children's programmes, prime time significantly differed ( p <0.05) between weekdays (mean = 1.89 +/- 0.18 hr) and weekends (mean = 4.61 +/- 0.33 hr). The increased trend during weekends, school vacation and Ramadhan was evident. Over the six-month period, the mean number of food advertisements appearing per month varied greatly between television stations (C = 1104; D = 643; F = 407; B = 327; A = 59; E = 47). Food advertising also increased the most in September (n = 3158), followed by July (n = 2770), August (n = 2431), October (n = 2291), November (n = 2245) and June (n = 2211). Content analysis of advertisements indicated snacks were the highest (34.5%), followed by dairy products (20.3%), sugars and candies (13.4%), biscuits (11.2%), fast food (6.7%), breakfast cereal (6.4%), beverages (4.1%), supplements (0.9%), rice (0.6%), noodles (0.5%), bread (0.3%), miscellaneous and processed foods (0.2%). Paradoxically, we found that the frequency of snack food advertised during children's prime time was 5 times more than fast foods. The sodium content (mean = 620 mg per 100g) of these snack foods was found to be highest.
    Matched MeSH terms: Food Industry/organization & administration*
  4. Kasapila W, Shaarani SM
    Asia Pac J Clin Nutr, 2011;20(1):1-8.
    PMID: 21393103
    In the globalised world of the 21st century, issues of food and nutrition labelling are of pre-eminent importance. Several international bodies, including the World Health Organisation and World Trade Organisation, are encouraging countries to harmonise their food and nutrition regulations with international standards, guidelines and recommendations such as those for Codex Alimentarius. Through harmonisation, these organisations envisage fewer barriers to trade and freer movement of food products between countries, which would open doors to new markets and opportunities for the food industry. In turn, increased food trade would enhance economic development and allow consumers a greater choice of products. Inevitably, however, embracing harmonisation brings along cost implications and challenges that have to be overcome. Moreover, the harmonisation process is complex and sporadic in light of the tasks that countries have to undertake; for example, updating legislation, strengthening administrative capabilities and establishing analytical laboratories. This review discusses the legislation and regulations that govern food and nutrition labelling in Southeast Asia, and highlights the discrepancies that exist in this regard, their origin and consequences. It also gives an account of the current status of harmonising labelling of pre-packaged foodstuffs in the region and explains the subsequent benefits, challenges and implications for governments, the food industry and consumers.
    Matched MeSH terms: Food Industry/economics
  5. He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, et al.
    BMC Biotechnol, 2017 02 28;17(1):22.
    PMID: 28245836 DOI: 10.1186/s12896-017-0343-8
    BACKGROUND: α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed.

    RESULTS: A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0-20 °C. The K m and V max values toward soluble starch were 2.51 mg/mL and 8.24 × 10-2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization.

    CONCLUSIONS: A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications.

    Matched MeSH terms: Food Industry/methods
  6. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, et al.
    BMC Microbiol, 2017 May 23;17(1):121.
    PMID: 28535747 DOI: 10.1186/s12866-017-1000-z
    BACKGROUND: Selection of a microbial strain for the incorporation into food products requires in vitro and in vivo evaluations. A bacteriocin-producing lactic acid bacterium (LAB), Pediococcus acidilactici Kp10, isolated from a traditional dried curd was assessed in vitro for its beneficial properties as a potential probiotic and starter culture. The inhibitory spectra of the bacterial strain against different gram-positive and gram-negative bacteria, its cell surface hydrophobicity and resistance to phenol, its haemolytic, amylolytic and proteolytic activities, ability to produce acid and coagulate milk together with its enzymatic characteristics and adhesion property were all evaluated in vitro.

    RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.

    CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.

    Matched MeSH terms: Food Industry*
  7. Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, et al.
    Biomed Res Int, 2013;2013:508968.
    PMID: 24151605 DOI: 10.1155/2013/508968
    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO₃, Zn⁺², and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R²) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO₃, 1.5 mM (v/v) Zn⁺², and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.
    Matched MeSH terms: Food Industry
  8. Balakrishnan K, Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Jan;128:788-91.
    PMID: 23186664 DOI: 10.1016/j.biortech.2012.10.023
    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.
    Matched MeSH terms: Food Industry
  9. Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, et al.
    Bioresour Technol, 2022 Jan;343:126065.
    PMID: 34624472 DOI: 10.1016/j.biortech.2021.126065
    The increase in solid waste has become a common problem and causes environmental pollution worldwide. A green approach to valorise solid waste for sustainable development is required. Agricultural residues are considered suitable for conversion into profitable products through solid-state fermentation (SSF). Agricultural wastes have high organic content that is used as potential substrates to produce value-added products through SSF. The importance of process variables used in solid-phase fermentation is described. The applications of SSF developed products in the food industry as flavouring agents, acidifiers, preservatives and flavour enhancers. SSF produces secondary metabolites and essential enzymes. Wastes from agricultural residues are used as bioremediation agents, biofuels and biocontrol agents through microbial processing. In this review paper, the value addition of agricultural wastes by SSF through green processing is discussed with the current knowledge on the scenarios, sustainability opportunities and future directions of a circular economy for solid waste utilisation.
    Matched MeSH terms: Food Industry
  10. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
    Matched MeSH terms: Food Industry
  11. Mustapha bin Akil, Chong, Saw Peng, Norellia binti Bahari
    MyJurnal
    Stevia rebaudiana has recently gained the attention of the food industry as one of the natural sweeteners. The sweet flavour is contributed by the glycoside compounds, especially the rebaudioside A and stevioside, which are the stevia main chemical markers. The aim of the work reported here was to compare the different extraction techniques of stevia leaves using different technologies such as the high pressure and ultrasonic on the extraction of steviol glycosides. In this paper, the extraction techniques yielding the highest glycosides from the leaves of Stevia rebaudiana were determined using hot water extraction (HWE), pressurised liquid extraction (PLE) and ultrasound-assisted extraction (UAE). The steviol glycoside yields were quantified by two chemical markers, rebaudioside A and stevioside of Stevia rebaudiana using highperformance liquid chromatography (HPLC) analysis. The result showed that the HWE managed to obtain 1,110 mg of steviol glycosides. The PLE obtained 294 mg steviol glycosides and the UAE obtained 427.5 mg steviol glycosides. As a conclusion, the results suggested the most efficient technique for stevia extraction in this study was the HWE.
    Matched MeSH terms: Food Industry
  12. Roslina Jawan, Sahar Abbasiliasi, Shuhaimi Mustafa, Murni Halim, Arbakariya Ariff
    MyJurnal
    Probiotics are live, microbial cells with several beneficial health effects on humans. The beneficial effect of probiotics mainly depends on their survival in the gastrointestinal tract. The health-promoting properties of certain LAB inhabiting the human gastrointestinal tract encouraged the food industry to develop new functional food products containing probiotic. Selection of a microbial strain for the incorporation into food products requires both in vitro and in vivo evaluations
    Matched MeSH terms: Food Industry
  13. Lee HY, Chai LC, Pui CF, Mustafa S, Cheah YK, Nishibuchi M, et al.
    Braz J Microbiol, 2013;44(1):51-5.
    PMID: 24159283 DOI: 10.1590/S1517-83822013005000004
    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1-10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.
    Matched MeSH terms: Food Industry
  14. Surjit Singh CK, Lim HP, Tey BT, Chan ES
    Carbohydr Polym, 2021 Jan 01;251:117110.
    PMID: 33142647 DOI: 10.1016/j.carbpol.2020.117110
    The commercial application of liquid-state Pickering emulsions in food systems remains a major challenge. In this study, we developed a spray-dried Pickering emulsion powder using chitosan as a Pickering emulsifier and alginate as a coating material. The functionality of the powder was evaluated in terms of its oxidative stability, pH-responsiveness, mucoadhesivity, and lipid digestibility. The Pickering emulsion powder was oxidatively more stable than the conventional emulsion powder stabilized by gum Arabic. The powder exhibited pH-responsiveness, whereby it remained intact in acidic pH, but dissolved to release the emulsion in 'Pickering form' at near-neutral pH. The Pickering emulsion powder was also mucoadhesive and could be digested by lipase in a controlled manner. These findings suggested that the multi-functional Pickering emulsion powder could be a potential delivery system for applications in the food industry.
    Matched MeSH terms: Food Industry
  15. Tan L, Ng SH, Omar A, Karupaiah T
    Child Obes, 2018 07;14(5):280-290.
    PMID: 29985649 DOI: 10.1089/chi.2018.0037
    BACKGROUND: Unhealthy food marketing to children is a key risk factor for childhood obesity. Online video platforms have surpassed television as the primary choice for screen viewing among children but the extent of food marketing through such media is relatively unknown. We aimed to examine food and beverage advertisements (ads) encountered in YouTube videos targeting children in Malaysia.

    METHODS: The social media analytics site SocialBlade.com was used to identify the most popular YouTube videos (n = 250) targeting children. Ads encountered while viewing these videos were recorded and analyzed for type of product promoted and ad format (video vs. overlay). Food and beverage ads were further coded based on food category and persuasive marketing techniques used.

    RESULTS: In total 187 ads were encountered in sampled videos. Food and beverage ads were the most common at 38% (n=71), among which 56.3% (n = 40) promoted noncore foods. Ads for noncore foods were more commonly delivered as video rather than overlay ads. Among ads promoting noncore foods, the most commonly employed persuasive marketing techniques found were taste appeal (42.3%), uniqueness/novelty (32.4%), the use of animation (22.5%), fun appeal (22.5%), use of promotional characters (15.5%), price (12.7%), and health and nutrition benefits (8.5%).

    CONCLUSIONS: Similar to television, unhealthy food ads predominate in content aimed toward children on YouTube. Policies regulating food marketing to children need to be extended to cover online content in line with a rapidly-evolving digital media environment. Service providers of social media can play a part in limiting unhealthy food advertising to children.

    Matched MeSH terms: Food Industry*
  16. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al.
    Compr Rev Food Sci Food Saf, 2023 Nov;22(6):4217-4241.
    PMID: 37583298 DOI: 10.1111/1541-4337.13217
    Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
    Matched MeSH terms: Food Industry
  17. Bhat R, Khalil HP, Karim AA
    C. R. Biol., 2009 Sep;332(9):827-31.
    PMID: 19748457 DOI: 10.1016/j.crvi.2009.05.004
    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.
    Matched MeSH terms: Food Industry
  18. Ahmad Tarmizi AH, Kuntom A
    PMID: 33397128 DOI: 10.1080/10408398.2020.1865264
    3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) are processed-developed contaminants presence in vegetable oils after undergo refining process under excessive heat. Refined oils are extensively used in various frying applications, nevertheless, the reservation against their quality and safety aspects are of major concern to consumers and food industry. Realizing the importance to address these issues, this article deliberates an overview of published studies on the manifestation of 3-MCPDE and GE when vegetable oils undergo for frying process. With the modest number of published frying research associated to 3-MCPDE and GE, we confined our review from the perspectives of frying conditions, product properties, antioxidants and additives, pre-frying treatments and frying oil management. Simplicity of the frying process is often denied by the complexity of reactions occurred between oil and food which led to the development of unwanted contaminants. The behavior of 3-MCPDE and GE is closely related to physico-chemical characteristics of oils during frying. As such, relationships between 3-MCPDE and/or GE with frying quality indices - i.e. acidity in term of free fatty acid or acid value); secondary oxidation in term of p-anisidine value, total polar compounds and its fractions, and refractive index - were also discussed when oils were subjected under intermittent and continuous frying conditions.
    Matched MeSH terms: Food Industry
  19. Kelly B, Backholer K, Boyland E, Kent MP, Bragg MA, Karupaiah T, et al.
    Curr Nutr Rep, 2023 Mar;12(1):14-25.
    PMID: 36746878 DOI: 10.1007/s13668-023-00450-7
    PURPOSE OF REVIEW: Protecting children from unhealthful food marketing is a global priority policy for improving population diets. Monitoring the nature and extent of children's exposure to this marketing is critical in policy development and implementation. This review summarises contemporary approaches to monitor the nature and extent of food marketing to support policy reform.

    RECENT FINDINGS: Monitoring approaches vary depending on the stage of progress of related policy implementation, with resource implications and opportunity costs. Considerations include priority media/settings. marketing techniques assessed, approach to classifying foods, study design and if exposure assessments are based on media content analyses or are estimated or observed based on children's media use. Current evidence is largely limited to high-income countries and focuses on content analyses of TV advertising. Ongoing efforts are needed to support monitoring in low-resource settings and to progress monitoring to better capture children's actual exposures across media and settings.

    Matched MeSH terms: Food Industry*
  20. Pati S, Jena P, Shahimi S, Nelson BR, Acharya D, Dash BP, et al.
    Data Brief, 2020 Oct;32:106081.
    PMID: 32775581 DOI: 10.1016/j.dib.2020.106081
    This dataset presents morphological features, elemental composition and functional groups of different pre- and post-gamma (γ)-irradiated chitosan (10kGy & 20kGy) prepared from shrimp waste. The γ-irradiated chitosan was characterized using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. Thermogravimetry/differential thermal analysis (TG/DTA) were performed using Perkin Elmer Pyris Diamond DSC with a heating rate of 10 °C/minute and dynamic synthetic atmospheric air set at flow rate of 100 ml/minute. We observed γ-irradiated chitosan to have shorter polymer size, small pores and compacted structure with active alkyl and hydroxyl groups when compared to non-irradiated chitosan. Our data provides baseline understanding for structure of shrimp chitosan after 60Co exposure which means, the biopolymer becomes more stable and is considered suitable for vast food industry applications.
    Matched MeSH terms: Food Industry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links