Displaying publications 1 - 20 of 156 in total

Abstract:
Sort:
  1. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  2. Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, et al.
    Sci Rep, 2020 08 25;10(1):14165.
    PMID: 32843675 DOI: 10.1038/s41598-020-70962-7
    In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC50 = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p 
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/pharmacology; Free Radical Scavengers/toxicity
  3. Bhatti S, Ali Shah SA, Ahmed T, Zahid S
    Drug Chem Toxicol, 2018 Oct;41(4):399-407.
    PMID: 29742941 DOI: 10.1080/01480545.2018.1459669
    The present study investigates the neuroprotective effects of Foeniculum vulgare seeds in a lead (Pb)-induced brain neurotoxicity mice model. The dried seeds extract of Foeniculum vulgare was prepared with different concentrations of organic solvents (ethanol, methanol, n-hexane). The in vitro antioxidant activity of Foeniculum vulgare seed extracts was assessed through DPPH assay and the chemical composition of the extracts was determined by high-resolution 1H NMR spectroscopy. The age-matched male Balb/c mice (divided into 9 groups) were administered with 0.1% Pb and 75% and 100% ethanol extracts of Foeniculum vulgare seeds at a dose of 200 mg/kg/day and 20 mg/kg/day. The maximum antioxidant activity was found for 75% ethanol extract, followed by 100% ethanol extract. Gene expression levels of oxidative stress markers (SOD1 and Prdx6) and the three isoforms of APP (APP common, 770 and 695), in the cortex and hippocampus of the treated and the control groups were measured. Significant increase in APP 770 expression level while a substantial decrease was observed for SOD1, Prdx6 and APP 695 expression in Pb-treated groups. Interestingly, the deranged expression levels were significantly normalized by the treatment with ethanol extracts of Foeniculum vulgare seeds (specifically at dose of 200 mg/kg/day). Furthermore, the Pb-induced morphological deterioration of cortical neurons was significantly improved by the ethanol extracts of Foeniculum vulgare seeds. In conclusion, the present findings highlight the promising therapeutic potential of Foeniculum vulgare to minimize neuronal toxicity by normalizing the expression levels of APP isoforms and oxidative stress markers.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  4. Kassim M, Mansor M, Kamalden TA, Shariffuddin II, Hasan MS, Ong G, et al.
    Shock, 2014 Aug;42(2):154-60.
    PMID: 24667629 DOI: 10.1097/SHK.0000000000000179
    Excessive free radical production by immune cells has been linked to cell death and tissue injury during sepsis. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death that has been identified in several pathological conditions. Caffeic acid phenethyl ester (CAPE) is an active component of honeybee products and exhibits antioxidant, anti-inflammatory, and immunomodulatory activities. The present study examined the ability of CAPE to scavenge peroxynitrite in RAW 264.7 murine macrophages stimulated with lipopolysaccharide/interferon-γ that was used as an in vitro model. Conversion of 123-dihydrorhodamine to its oxidation product 123-rhodamine was used to measure peroxynitrite production. Two mouse models of sepsis (endotoxemia and cecal ligation and puncture) were used as in vivo models. The level of serum 3-nitrotyrosine was used as an in vivo marker of peroxynitrite. The results demonstrated that CAPE significantly improved the viability of lipopolysaccharide/interferon-γ-treated RAW 264.7 cells and significantly inhibited nitric oxide production, with effects similar to those observed with an inhibitor of inducible nitric oxide synthase (1400W). In addition, CAPE exclusively inhibited the synthesis of peroxynitrite from the artificial substrate SIN-1 and directly prevented the peroxynitrite-mediated conversion of dihydrorhodamine-123 to its fluorescent oxidation product rhodamine-123. In both sepsis models, CAPE inhibited cellular peroxynitrite synthesis, as evidenced by the absence of serum 3-nitrotyrosine, an in vivo marker of peroxynitrite. Thus, CAPE attenuates the inflammatory responses that lead to cell damage and, potentially, cell death through suppression of the production of cytotoxic molecules such as nitric oxide and peroxynitrite. These observations provide evidence of the therapeutic potential of CAPE treatment for a wide range of inflammatory disorders.
    Matched MeSH terms: Free Radical Scavengers/administration & dosage; Free Radical Scavengers/pharmacology*; Free Radical Scavengers/therapeutic use
  5. Kassim M, Mansor M, Suhaimi A, Ong G, Yusoff KM
    Int J Mol Sci, 2012;13(9):12113-29.
    PMID: 23109904 DOI: 10.3390/ijms130912113
    Monocytes and macrophages are part of the first-line defense against bacterial, fungal, and viral infections during host immune responses; they express high levels of proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening properties, is a natural antioxidant that has been used since ancient times in traditional medicine. We examined the ability of Gelam honey, derived from the Gelam tree (Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ) and in LPS-treated rats. Gelam honey significantly improved the viability of LPS/IFN-γ-treated RAW 264.7 cells and inhibited nitric oxide production-similar to the effects observed with an inhibitor of inducible nitric oxide synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus, honey may attenuate inflammatory responses that lead to cell damage and death, suggesting its therapeutic uses for several inflammatory disorders.
    Matched MeSH terms: Free Radical Scavengers/pharmacology*
  6. Wong YS, Sia CM, Khoo HE, Ang YK, Chang SK, Chang SK, et al.
    Acta Sci Pol Technol Aliment, 2014 Jul-Sep;13(3):257-65.
    PMID: 24887941
    As a by-product of tropical fruit juice industry, passion fruit peel is a valuable functional food. It is rich in antioxidants. To determine its potential antioxidant properties of passion fruit peel, this study aimed to evaluate the effect of extraction conditions on total phenolic content and antioxidant activity.
    Matched MeSH terms: Free Radical Scavengers/analysis
  7. Ahmed IA, Mikail MA, Bin Ibrahim M, Bin Hazali N, Rasad MS, Ghani RA, et al.
    Food Chem, 2015 Apr 1;172:778-87.
    PMID: 25442620 DOI: 10.1016/j.foodchem.2014.09.122
    Baccaurea angulata is an underutilised tropical fruit of Borneo Island of Malaysia. The effect of solvents was examined on yield, total phenolic (TPC), total flavonoids (TFC), total carotene content (TCC), free radical scavenging activities and lipid peroxidation inhibition activities. The results indicated that the pulp (edible portion) had the highest yield, while methanol extracts were significantly (p < 0.01) found to contain higher TPC, TFC and TCC than phosphate buffered saline (PBS) extracts for all the fruits parts. The methanol extracts also showed remarkable antiradical activity and significant lipid peroxidation inhibition activities, with their IC50 results highly comparable to that of commercial blueberry. The variations in the results among the extracts suggest different interactions, such as negative or antagonistic (interference), additive and synergistic effect interactions. The study indicated that B. angulata like other underutilised tropical fruits contained remarkable primary antioxidants. Thus, the fruit has the potential to be sources of antioxidant components.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  8. Muhammad N, Din LB, Sahidin I, Hashim SF, Ibrahim N, Zakaria Z, et al.
    Molecules, 2012 Jul 30;17(8):9043-55.
    PMID: 22847143 DOI: 10.3390/molecules17089043
    A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT). All compounds tested exhibited good to moderate antioxidant activity in the DPPH assay (IC₅₀s 0.84 to 10.06 mM) and displayed strong inhibition of β-carotene oxidation (IC₅₀s 0.10 to 0.22 mM). The isolated compounds were evaluated on the Vero cell line and were found to be non-cytotoxic with LC₅₀ values between 161 to 830 µM.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification*; Free Radical Scavengers/toxicity; Free Radical Scavengers/chemistry
  9. Sirimahachai R, Harome H, Wongnawa S
    Sains Malaysiana, 2017;46:1393-1399.
    AgCl/BiYO3
    composite was successfully synthesized via the aqueous precipitation method followed by calcination. The
    varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3
    via sonochemical-assisted method. The structures and
    morphologies of the as-prepared AgCl/BiYO3
    composite were characterized by x-ray diffraction (XRD), scanning electron
    microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/
    BiYO3
    composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3
    composite was
    evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants,
    under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable
    photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover,
    the mechanism of photocatalytic degradation of AgCl/BiYO3
    was elucidated using three types of free radical scavengers.
    The significant enhancement was attributed to the formation of AgCl/BiYO3
    heterojunction resulting in the low electronhole
    pair recombination rate.
    Matched MeSH terms: Free Radical Scavengers
  10. Wei J, Yang F, Gong C, Shi X, Wang G
    J Biochem Mol Toxicol, 2019 Jun;33(6):e22319.
    PMID: 30897277 DOI: 10.1002/jbt.22319
    Oxidative stress is performing an essential role in developing Alzheimer's disease (AD), and age-related disorder and other neurodegenerative diseases. In existing research, we have aimed at investigating the daidzein (4',7-dihydroxyisoflavone) effect (10 and 20 mg/kg of body weight), as a free radical scavenger and antioxidant in streptozotocin (STZ) infused AD in rat model. Daidzein treatment led to significant improvement in intracerebroventricular-streptozotocin (ICV-STZ)-induced memory and learning impairments that was evaluated by Morris water maze test and spontaneous locomotor activity. It significantly restored the alterations in malondialdehyde, catalase, superoxide dismutase, and reduced glutathione levels. In addition, histopathological observations in cerebral cortex and hippocampal areas confirmed the neuroprotective effect of daidzein. These outcomes provide experimental proof showing preventive effect of daidzein on memory, learning dysfunction and oxidative stress in case of ICV-STZ rats. In conclusion, daidzein offers a potential treatment module for various neurodegenerative disorders with regard to mental deficits like AD.
    Matched MeSH terms: Free Radical Scavengers
  11. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  12. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
    Matched MeSH terms: Free Radical Scavengers/analysis*; Free Radical Scavengers/chemistry
  13. Sirat HM, Rezali MF, Ujang Z
    J Agric Food Chem, 2010 Oct 13;58(19):10404-9.
    PMID: 20809630 DOI: 10.1021/jf102231h
    Phytochemical and bioactivity studies of the leaves and stem barks of Tibouchina semidecandra L. have been carried out. The ethyl acetate extract of the leaves yielded four flavonoid compounds, identified as quercetin, quercetin 3-O-α-l-(2''-O-acetyl) arabinofuranoside, avicularin, and quercitrin, while the stem barks gave one ellagitannin, identified as 3,3'-O-dimethyl ellagic acid 4-O-α-l-rhamnopyranoside. Evaluation of the antioxidative activity on the crude extracts and pure compounds by electron spin resonance (ESR) and ultraviolet-visible (UV-vis) spectrophotometric assays showed that the pure isolated polyphenols and the EtOAc extract possessed strong antioxidative capabilities. Quercetin was found to be the most active radical scavenger in DPPH-UV and ESR methods with SC(50) values of 0.7 μM ± 1.4 and 0.7 μM ± 0.6 μM, respectively, in the antioxidant assay. A combination of quercetin and quercitrin was tested for synergistic antioxidative capacity;, however, there was no significant improvement observed. Quercetin also exhibited strong antityrosinase activity with a percent inhibition of 95.0% equivalent to the positive control, kojic acid, in the tyrosinase inhibition assay.
    Matched MeSH terms: Free Radical Scavengers/pharmacology*
  14. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  15. Yap HY, Aziz AA, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2014;11(6):602-7.
    PMID: 24782649 DOI: 10.7150/ijms.8341
    The Lignosus is a genus of fungi that have useful medicinal properties. In Southeast Asia, three species of Lignosus (locally known collectively as Tiger milk mushrooms) have been reported including L. tigris, L. rhinocerotis, and L. cameronensis. All three have been used as important medicinal mushrooms by the natives of Peninsular Malaysia. In this work, the nutritional composition and antioxidant activities of the wild type and a cultivated strain of L. tigris sclerotial extracts were investigated. The sclerotia are rich in carbohydrates with moderate amount of protein and low fat content. Free radical scavenging activities of L. tigris sclerotial extracts correlate with their phenolic content, which ranges from 6.25 to 45.42 mg GAE/g extract. The FRAP values ranged from 0.002 to 0.041 mmol/min/g extract, while the DPPH(•), ABTS(•+), and superoxide anion (SOA) scavenging activities ranged from 0.18 to 2.53, 0.01 to 0.36, and -4.53 to 10.05 mmol Trolox equivalents/g extract, respectively. L. tigris cultivar shows good prospect to be developed into functional food due to its good nutritional value and potent SOA scavenging activity.
    Matched MeSH terms: Free Radical Scavengers/metabolism
  16. Poh WY, Omar MS, Tan HP
    Ann Saudi Med, 2018 8 6;38(4):269-276.
    PMID: 30078025 DOI: 10.5144/0256-4947.2018.269
    BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is rec.ognized as a common complication of radiographic contrast-enhanced procedures. N-acetylcysteine (NAC) is commonly prescribed, but CI-AKI can still develop despite NAC administration as prophylaxis.

    OBJECTIVE: Identify the predictive factors for development of CI-AKI in patients prescribed NAC.

    DESIGN: Prospective, cross-sectional.

    SETTING: A tertiary hospital in Malaysia.

    PATIENTS AND METHODS: All adult patients who were prescribed NAC for prevention of CI-AKI were identified through an NAC drug us.age monitoring card maintained by the inpatient pharmacy. The study was conducted from March to July 2017.

    MAIN OUTCOME MEASURES: Statistically significant predictive fac.tors for development of CI-AKI despite NAC administration.

    SAMPLE SIZE: 152 RESULTS: The most commonly recognized risk factors for CI-AKI present in the study population were renal impairment (n=131, 86.2%), anemia (n=107, 70.4%), and diabetes mellitus (n=90, 59.2%). Hydration therapy was initiated in 128 patients (84.2%) prior to the contrast-enhanced procedure. Sixty-one (40.1%) were treated with nephrotoxic medications concomitantly with NAC. Fifteen (9.9%) patients developed AKI. Hypotension (OR: 6.02; 95% CI 1.25-28.97) and use of high contrast volume (OR: 6.56; 95% CI: 1.41-30.64) significantly increased the odds for AKI. Prior hydration therapy (OR: 0.13; 95% CI 0.03-0.59) showed protective effects.

    CONCLUSION: The risk predictors identified for CI-AKI were hypotension, high contrast volume and prior hydration therapy.

    LIMITATION: May not have identified other confounding factors for development of CI-AKI.

    CONFLICT OF INTEREST: None.

    Matched MeSH terms: Free Radical Scavengers/pharmacology
  17. Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, et al.
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512700 DOI: 10.3390/molecules25112610
    Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  18. Mediani A, Abas F, Khatib A, Tan CP
    Molecules, 2013 Aug 29;18(9):10452-64.
    PMID: 23994970 DOI: 10.3390/molecules180910452
    The aim of the study was to analyze the influence of oven thermal processing of Cosmos caudatus on the total polyphenolic content (TPC) and antioxidant capacity (DPPH) of two different solvent extracts (80% methanol, and 80% ethanol). Sonication was used to extract bioactive compounds from this herb. The results showed that the optimised conditions for the oven drying method for 80% methanol and 80% ethanol were 44.5 °C for 4 h with an IC₅₀ of 0.045 mg/mL and 43.12 °C for 4.05 h with an IC₅₀ of 0.055 mg/mL, respectively. The predicted values for TPC under the optimised conditions for 80% methanol and 80% ethanol were 16.5 and 15.8 mg GAE/100 g DW, respectively. The results obtained from this study demonstrate that Cosmos caudatus can be used as a potential source of antioxidants for food and medicinal applications.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification*; Free Radical Scavengers/chemistry
  19. Thoo YY, Ho SK, Abas F, Lai OM, Ho CW, Tan CP
    Molecules, 2013 Jun 14;18(6):7004-22.
    PMID: 23771061 DOI: 10.3390/molecules18067004
    Antioxidants have been widely used in the food industry to enhance product quality by preventing oxidation of susceptible substances. This work was carried out to maximise the recovery of total phenolic content (TPC), total flavonoid content (TFC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging capacity and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity from Morinda citrifolia fruit via modification of the ethanol concentration, extraction time and extraction temperature at minimal processing cost. The optimised conditions yielded values of 881.57 ± 17.74 mg GAE/100 g DW for TPC, 552.53 ± 34.16 mg CE/100 g DW for TFC, 799.20 ± 2.97 µmol TEAC/100 g DW for ABTS and 2,317.01 ± 18.13 µmol TEAC/100 g DW for DPPH were 75% ethanol, 40 min of time and 57 °C. The four responses did not differ significantly (p > 0.05) from predicted values, indicating that models obtained are suitable to the optimisation of extraction conditions for phenolics from M. citrifolia. The relative amounts of flavonoids were 0.784 ± 0.01 mg quercetin/g of extract and 1.021 ± 0.04 mg rutin/g of extract. On the basis of the results obtained, M. citrifolia extract can be used as a valuable bioactive source of natural antioxidants.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  20. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, et al.
    J Ethnopharmacol, 2004 Jun;92(2-3):263-7.
    PMID: 15138010
    Methanol extracts of seven Malaysian medicinal plants were screened for antioxidant and nitric oxide inhibitory activities. Antioxidant activity was measured by using FTC, TBA and DPPH free radical scavenging methods and Griess assay was used for the measurement of nitric oxide inhibition in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated RAW 264.7 cells. All the extracts showed strong antioxidant activity comparable to or higher than that of alpha-tocopherol, BHT and quercetin in FTC and TBA methods. The extracts from Leea indica and Spermacoce articularis showed strong DPPH free radical scavenging activity comparable with quercetin, BHT and Vit C. Spermacoce exilis showed only moderate activity but other species were weak as compared to the standards. In the Griess assay Lasianthus oblongus, Chasalia chartacea, Hedyotis verticillata, Spermacoce articularis and Leea indica showed strong inhibitory activity on nitric oxide production in LPS and IFN-gamma-induced RAW 264.7 cells. Extracts from Psychotria rostrata and Spermacoce exilis also inhibited NO production but this was due to their cytotoxic effects upon cells during culture.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification; Free Radical Scavengers/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links