Displaying publications 1 - 20 of 8034 in total

Abstract:
Sort:
  1. Lim WY, Chia YY, Liong SY, Ton SH, Kadir KA, Husain SN
    Lipids Health Dis, 2009;8:31.
    PMID: 19638239 DOI: 10.1186/1476-511X-8-31
    The metabolic syndrome (MetS) is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR). With the onset of IR, the expression of lipoprotein lipase (LPL), a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA), the bioactive constituent of licorice roots (Glycyrrhiza glabra) inhibits 11beta-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS.
    Matched MeSH terms: Lipoprotein Lipase/genetics*
  2. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
    Matched MeSH terms: Hepatocyte Growth Factor/genetics
  3. Sukeepaisarnjaroen W, Pham T, Tanwandee T, Nazareth S, Galhenage S, Mollison L, et al.
    World J Gastroenterol, 2015 Jul 28;21(28):8660-9.
    PMID: 26229408 DOI: 10.3748/wjg.v21.i28.8660
    To examined the efficacy and safety of treatment with boceprevir, PEGylated-interferon and ribavirin (PR) in hepatitis C virus genotype 1 (HCVGT1) PR treatment-failures in Asia.
    Matched MeSH terms: Hepacivirus/genetics
  4. Coste C, Gérard N, Dinh CP, Bruguière A, Rouger C, Leong ST, et al.
    Biomolecules, 2020 09 02;10(9).
    PMID: 32887413 DOI: 10.3390/biom10091266
    Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  5. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Diabetes Mellitus, Experimental/genetics
  6. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
    Matched MeSH terms: BRCA1 Protein/genetics
  7. Abdul Nasir NA, Agarwal R, Sheikh Abdul Kadir SH, Vasudevan S, Tripathy M, Iezhitsa I, et al.
    PLoS One, 2017;12(3):e0174542.
    PMID: 28350848 DOI: 10.1371/journal.pone.0174542
    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase activity, polyol levels and oxidative-nitrosative stress. These effects of tocotrienol invlove reduced NFκB activation, lower iNOS expression, restoration of ATP level, ATPase activities, calpain activity and lens protein levels.
    Matched MeSH terms: Nitric Oxide Synthase Type II/genetics
  8. Vilhena-Franco T, Mecawi AS, Elias LL, Antunes-Rodrigues J
    J Endocrinol, 2016 Nov;231(2):167-180.
    PMID: 27613338
    Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  9. Andrieux-Meyer I, Tan SS, Thanprasertsuk S, Salvadori N, Menétrey C, Simon F, et al.
    Lancet Gastroenterol Hepatol, 2021 Jun;6(6):448-458.
    PMID: 33865507 DOI: 10.1016/S2468-1253(21)00031-5
    BACKGROUND: In low-income and middle-income countries, affordable direct-acting antivirals are urgently needed to treat hepatitis C virus (HCV) infection. The combination of ravidasvir, a pangenotypic non-structural protein 5A (NS5A) inhibitor, and sofosbuvir has shown efficacy and safety in patients with chronic HCV genotype 4 infection. STORM-C-1 trial aimed to assess the efficacy and safety of ravidasvir plus sofosbuvir in a diverse population of adults chronically infected with HCV.

    METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.

    FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.

    INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.

    FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.

    Matched MeSH terms: Hepacivirus/genetics
  10. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al.
    Biomed Pharmacother, 2016 Jul;81:439-452.
    PMID: 27261624 DOI: 10.1016/j.biopha.2016.04.032
    INTRODUCTION: Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope.

    METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.

    RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.

    CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.

    Matched MeSH terms: Diabetes Mellitus, Experimental/genetics; RNA, Messenger/genetics
  11. Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JF, Murphy D
    Mol Brain, 2016 Jan 07;9:1.
    PMID: 26739966 DOI: 10.1186/s13041-015-0182-2
    BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain.

    RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress.

    CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

    Matched MeSH terms: RNA, Messenger/genetics; ras Proteins/genetics
  12. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
    Matched MeSH terms: Cytokines/genetics; Mitogen-Activated Protein Kinases/genetics
  13. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
    Matched MeSH terms: Breast Neoplasms/genetics; NF-kappa B/genetics
  14. Kim YH, Kim KH, Han CS, Park SH, Yang HC, Lee BY, et al.
    J Cosmet Sci, 2008 Sep-Oct;59(5):419-30.
    PMID: 18841306
    Crinum asiaticum Linne var. japonicum has long been used as a rheumatic remedy, as an anti-pyretic and as an anti-ulcer treatment, and for the alleviation of local pain and fever in Korea and Malaysia. In order to investigate the possibility of Crinum asiaticum Linne var. japonicum extract as a cosmetic ingredient, we measured its anti-inflammatory effect by its inhibition of iNOS (inducible nitric oxide synthase) and the release of PGE2, IL-6, and IL-8. We also measured its anti-allergic effect by its inhibition of beta-hexosamidase release. An HPLC experiment after extraction with 95% EtOH at pH 3.5 showed that Crinum asiaticum Linne var. japonicum was mainly composed of lycorine (up to 1%), a well-known immunosuppressor. The content of lycorine varied, depending on the type of plant tissue analyzed and the extraction method. In an anti-inflammatory assay for inhibition of nitric oxide formation on lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells, the ethanol extract of Crinum asiaticum showed an inhibitory activity of NO production in a dose-dependent manner (IC50 = 58.5 microg/ml). Additional study by RT-PCR demonstrated that the extract of Crinum asiaticum significantly suppressed the expression of the iNOS gene. Moreover, the extract of Crinum asiaticum did not show any cytotoxicity, but did show a cell proliferation effect against LPS (a 10 approximately 60% increase in cell viability). In an assay to determine inhibition of the H2O2-activated release of PGE2, IL-6, and IL-8 in human normal fibroblast cell lines, the release of PGE2 and IL-6 was almost completely inhibited above concentrations of 0.05% and 1%, respectively. Moreover, the release of IL-8 was completely inhibited over the entire range of concentration (>0.0025%). In order to investigate the skin-sensitizing potentials of the extract of Crinum asiaticum, a human clinical test was performed after repeated epicutaneous 48-h applications under an occlusive patch (RIPT). The repeated and single cutaneous applications of Crinum asiaticum Linne var. japonicum extract under the occlusive patch did not provoke any cumulative irritation and sensitization reactions. The result showed that the extract of Crinum asiaticum Linne var. japonicum has a sufficient anti-inflammatory effect. Therefore, Crinum asiaticum Linne var. japonicum extract may be useful for development as an ingredient in cosmetic products.
    Matched MeSH terms: RNA, Messenger/genetics; Nitric Oxide Synthase Type II/genetics
  15. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A
    Curr Med Chem, 2012;19(30):5181-6.
    PMID: 23237188
    Gestational diabetes (GD) is a common complication during pregnancy. Metabolic changes in GD affect fetal development and fetal glucose homeostasis. The present study utilized a rat model of GD to evaluate the effects of nicotinamide on diabetic parameters; antioxidant gene expression viz, superoxide dismutase (SOD) and catalase (CAT); reactive oxygen species (ROS) production by neutrophils and enhancement of lymphocyte mediated immune response. Nicotinamide (50, 100 and 200 mg/kg) was orally supplemented to gestational diabetic rats from days 6 through 20 of gestation. After GD induction, the control group had elevated glucose and reduced insulin while nicotinamide (100 & 200 mg/kg) supplementation reversed these changes. The same doses of nicotinamide upregulated mRNA expressions of SOD and CAT genes in liver but reduced the oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation. Nicotinamide (100 & 200 mg/kg) supplementation also increased expression of activated T helper (CD4+CD25+) cells and induced proliferation of splenocytes. These findings provide evidence for utilizing nicotinamide as supplement or adjunct to support existing therapeutic agents for gestational diabetes and in pregnant individuals with weakened immune systems.
    Matched MeSH terms: Catalase/genetics; Superoxide Dismutase/genetics
  16. Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, et al.
    Bone, 2016 06;87:102-13.
    PMID: 27062994 DOI: 10.1016/j.bone.2016.04.001
    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM.
    Matched MeSH terms: Diabetes Mellitus, Type 2/genetics*; Inheritance Patterns/genetics*
  17. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics; bcl-2-Associated X Protein/genetics
  18. Orlikova B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, et al.
    Food Chem Toxicol, 2013 Sep;59:572-8.
    PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051
    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
    Matched MeSH terms: Neoplasm Proteins/genetics; Tumor Necrosis Factor-alpha/genetics
  19. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: PPAR delta/genetics; AMP-Activated Protein Kinases/genetics
  20. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Drosophila/genetics; Parkinsonian Disorders/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links