Displaying publications 1 - 20 of 8066 in total

Abstract:
Sort:
  1. Škalamera D, Dahmer-Heath M, Stevenson AJ, Pinto C, Shah ET, Daignault SM, et al.
    Oncotarget, 2016 Sep 20;7(38):61000-61020.
    PMID: 27876705 DOI: 10.18632/oncotarget.11314
    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.
    Matched MeSH terms: Breast Neoplasms/genetics*
  2. von Seth J, Dussex N, Díez-Del-Molino D, van der Valk T, Kutschera VE, Kierczak M, et al.
    Nat Commun, 2021 Apr 26;12(1):2393.
    PMID: 33896938 DOI: 10.1038/s41467-021-22386-8
    Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations.
    Matched MeSH terms: Perissodactyla/genetics*
  3. van Zonneveld M, Rakha M, Tan SY, Chou YY, Chang CH, Yen JY, et al.
    Sci Rep, 2020 02 07;10(1):2111.
    PMID: 32034221 DOI: 10.1038/s41598-020-58646-8
    This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). Our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. Twenty-two Vigna taxa are poorly conserved in genebanks or not at all. This germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. The high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.
    Matched MeSH terms: Stress, Physiological/genetics; Disease Resistance/genetics; Vigna/genetics
  4. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Fabaceae/genetics*; Plant Proteins/genetics*; Plant Root Nodulation/genetics*
  5. van Prooije T, Ibrahim NM, Azmin S, van de Warrenburg B
    Parkinsonism Relat Disord, 2021 11;92:112-118.
    PMID: 34711523 DOI: 10.1016/j.parkreldis.2021.10.023
    This paper reviews and summarizes three main aspects of spinocerebellar ataxias (SCA) in the Asian population. First, epidemiological studies were comprehensively reviewed. Overall, the most common subtypes include SCA1, SCA2, SCA3, and SCA6, but there are large differences in the relative prevalence of these and other SCA subtypes between Asian countries. Some subtypes such as SCA12 and SCA31 are rather specific to certain Asian populations. Second, we summarized distinctive phenotypic manifestations of SCA patients of Asian origin, for example a frequent co-occurrence of parkinsonism in some SCA subtypes. Lastly, we have conducted an exploratory survey study to map SCA-specific expertise, resources, and management in various Asian countries. This showed large differences in accessibility, genetic testing facilities, and treatment options between lower and higher income Asian countries. Currently, many Asian SCA patients remain without a final genetic diagnosis. Lack of prevalence data on SCA, lack of patient registries, and insufficient access to genetic testing facilities hamper a wider understanding of these diseases in several (particularly lower income) Asian countries.
    Matched MeSH terms: Spinocerebellar Ataxias/genetics; Asian Continental Ancestry Group/genetics
  6. van Holst Pellekaan SM, Ingman M, Roberts-Thomson J, Harding RM
    Am. J. Phys. Anthropol., 2006 Oct;131(2):282-94.
    PMID: 16596590
    We classified diversity in eight new complete mitochondrial genome sequences and 41 partial sequences from living Aboriginal Australians into five haplogroups. Haplogroup AuB belongs to global lineage M, and AuA, AuC, AuD, and AuE to N. Within N, we recognize subdivisions, assigning AuA to haplogroup S, AuD to haplogroup O, AuC to P4, and AuE to P8. On available evidence, (S)AuA and (M)AuB are widespread in Australia. (P4)AuC is found in the Riverine region of western New South Wales, and was identified by others in northern Australia. (O)AuD and (P8)AuE were clearly identified only from central Australia. Our eight Australian full mt genome sequences, combined with 20 others (Ingman and Gyllensten 2003 Genome Res. 13:1600-1606) and compared with full mt genome sequences from regions to the north that include Papua New Guinea, Malaya, and Andaman and Nicobar Islands, show that ancestral connections between regions are deep and limited to clustering at the level of the N and M macrohaplogroups. The Australian-specific distribution of the five haplogroups identified indicates genetic isolation over a long period. Ancestral connections within Australia are deeper than those reflected by known linguistic or culturally based affinities. Applying a coalescence analysis to a gene tree for the coding regions of the eight genomic sequences, we made estimates of time depth that support a continuity of presence for the descendants of a founding population already established by 40,000 years ago.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Oceanic Ancestry Group/genetics*
  7. van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007462.
    PMID: 31170144 DOI: 10.1371/journal.pntd.0007462
    Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
    Matched MeSH terms: Adenoviruses, Simian/genetics*; Vaccines, Synthetic/genetics; Viral Vaccines/genetics; Nipah Virus/genetics
  8. den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, et al.
    Am J Hum Genet, 2021 02 04;108(2):346-356.
    PMID: 33513338 DOI: 10.1016/j.ajhg.2021.01.007
    Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
    Matched MeSH terms: Matrix Attachment Region Binding Proteins/genetics*; Neurodevelopmental Disorders/genetics*
  9. de Verdal H, Vandeputte M, Mekkawy W, Chatain B, Benzie JAH
    BMC Genet, 2018 11 16;19(1):105.
    PMID: 30445908 DOI: 10.1186/s12863-018-0691-y
    BACKGROUND: Improving feed efficiency in fish is crucial at the economic, social and environmental levels with respect to developing a more sustainable aquaculture. The important contribution of genetic improvement to achieve this goal has been hampered by the lack of accurate basic information on the genetic parameters of feed efficiency in fish. We used video assessment of feed intake on individual fish reared in groups to estimate the genetic parameters of six growth traits, feed intake, feed conversion ratio (FCR) and residual feed intake in 40 pedigreed families of the GIFT strain of Nile tilapia, Oreochromis niloticus. Feed intake and growth were measured on juvenile fish (22.4 g mean body weight) during 13 consecutive meals, representing 7 days of measurements. We used these data to estimate the FCR response to different selection criteria to assess the potential of genetics as a means of increasing FCR in tilapia.

    RESULTS: Our results demonstrate genetic control for FCR in tilapia, with a heritability estimate of 0.32 ± 0.11. Response to selection estimates showed FCR could be efficiently improved by selective breeding. Due to low genetic correlations, selection for growth traits would not improve FCR. However, weight loss at fasting has a high genetic correlation with FCR (0.80 ± 0.25) and a moderate heritability (0.23), and could be an easy to measure and efficient criterion to improve FCR by selective breeding in tilapia.

    CONCLUSION: At this age, FCR is genetically determined in Nile tilapia. A selective breeding program could be possible and could help enabling the development of a more sustainable aquaculture production.

    Matched MeSH terms: Selective Breeding/genetics; Body Weight/genetics; Cichlids/genetics*
  10. de Silva JR, Amir A, Lau YL, Ooi CH, Fong MY
    PLoS One, 2019;14(9):e0222681.
    PMID: 31536563 DOI: 10.1371/journal.pone.0222681
    The Duffy blood group plays a key role in Plasmodium knowlesi and Plasmodium vivax invasion into human erythrocytes. The geographical distribution of the Duffy alleles differs between regions with the FY*A allele having high frequencies in many Asian populations, the FY*B allele is found predominately in European populations and the FY*Bes allele found predominantly in African regions. A previous study in Peninsular Malaysia indicated high homogeneity of the dominant FY*A/FY*A genotype. However, the distribution of the Duffy genotypes in Malaysian Borneo is currently unknown. In the present study, the distribution of Duffy blood group genotypes and allelic frequencies among P. knowlesi infected patients as well as healthy individuals in Malaysian Borneo were determined. A total of 79 P. knowlesi patient blood samples and 76 healthy donor samples were genotyped using allele specific polymerase chain reaction (ASP-PCR). Subsequently a P. knowlesi invasion assay was carried out on FY*AB/ FY*A and FY*A/ FY*A Duffy genotype blood to investigate if either genotype conferred increased susceptibility to P. knowlesi invasion. Our results show almost equal distribution between the homozygous FY*A/FY*A and heterozygous FY*A/FY*B genotypes. This is in stark contrast to the Duffy distribution in Peninsular Malaysia and the surrounding Southeast Asian region which is dominantly FY*A/FY*A. The mean percent invasion of FY*A/FY*A and FY*A/FY*B blood was not significantly different indicating that neither blood group confers increased susceptibility to P. knowlesi invasion.
    Matched MeSH terms: Blood Group Antigens/genetics*; Duffy Blood-Group System/genetics*; Gene Frequency/genetics; Malaria/genetics*; Genetic Predisposition to Disease/genetics*
  11. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 May 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
    Matched MeSH terms: Lions/genetics*
  12. de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, et al.
    Med Mycol, 2023 Feb 03;61(2).
    PMID: 36694950 DOI: 10.1093/mmy/myad009
    Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
    Matched MeSH terms: Candida/genetics
  13. de Azevedo JP, Nascimento LR, Cortinovis MC, Oliveira SS, da Costa EV, da Silva EE
    J Clin Virol, 2004 Dec;31(4):248-52.
    PMID: 15494264 DOI: 10.1016/j.jcv.2004.04.007
    BACKGROUND: Human adenoviruses are classified into six species, A-F, and 51 serotypes are recognized. Adenoviruses can cause a broad range of diseases. Serotypes 3, 7 and 21 are most commonly associated with CNS disease. Serotype 21 (specie B) was isolated from brain tissue and CSF of patients with acute flaccid paralysis (AFP) in Malaysia.
    OBJECTIVES: Characterize, by molecular methods, species B adenoviruses isolated from poliomyelitis-suspected cases and investigate the possible etiological role of adenoviruses in acute flaccid paralysis (AFP).
    STUDY DESIGN: 622 virus isolates, including Sabin-related polioviruses, non-polio enteroviruses (NPEV) and adenoviruses, were recovered from fecal specimens in our laboratory during the period of 1997-2002 from AFP cases occurring in Brazil, Peru and Bolivia. Negative controls consisted of 528 fecal specimens collected from healthy children <==5 of age. Of these, 478 were contacts of AFP negative cases and 50 were from a day-care center.
    RESULTS: Sixty-four adenovirus strains isolated in HEp2 (human laryngeal tumor cells) cells were confirmed as such by an adenovirus-group specific PCR. Nucleotide sequencing identified the following adenovirus species: A (3 isolates), B (20 isolates), C (38 isolates), D (2 isolates) and E (1 isolate). The following serotypes belonging to the species B were identified: Ad3 (1 strain), Ad7 (17 strains) and, Ad16 (2 strains).
    CONCLUSION: Other viral agents became more recognized in association with CNS diseases in areas where wild polioviruses have been eradicated. The possible role of species B adenoviruses in the etiology of AFP cases similar to that caused by wild poliovirus is discussed.
    Matched MeSH terms: Adenoviridae/genetics
  14. da Silva MP, Merino RM, Mecawi AS, Moraes DJ, Varanda WA
    Mol Cell Endocrinol, 2015 Jan 15;400:102-11.
    PMID: 25451978 DOI: 10.1016/j.mce.2014.11.004
    The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.
    Matched MeSH terms: Oxytocin/genetics; RNA, Messenger/genetics; Vasopressins/genetics
  15. da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, et al.
    Gigascience, 2020 Jan 01;9(1).
    PMID: 31942620 DOI: 10.1093/gigascience/giz152
    BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked.

    FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.

    CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.

    Matched MeSH terms: Decapodiformes/genetics*
  16. bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ
    PLoS One, 2014;9(6):e99760.
    PMID: 24949933 DOI: 10.1371/journal.pone.0099760
    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis.
    Matched MeSH terms: Fungal Proteins/genetics; Plant Diseases/genetics; Oryza/genetics; Spores, Fungal/genetics; Magnaporthe/genetics*; Hyphae/genetics; Lipid Metabolism/genetics*
  17. Zuridah H, Kirkwood CD, Bishop RF, Bogdanovic-Sakran N, Yap KL
    Med J Malaysia, 2009 Sep;64(3):193-6.
    PMID: 20527266 MyJurnal
    This retrospective study examined the G/P type of rotavirus in RNA samples that have previously been e-typed by RNA-PAGE in 1996. The results were then compared to 2007 samples to ascertain the extent of changes that may have occurred in this 11-years time interval. The G and P genotypes were determined by hemi-nested PCR and further analysed by phylogenetic study. In 1996, the G/P combination G1P[8], G(UT)P[8] and G1P(UT) prevalence rate were 81%, 9% and 7%, respectively. As expected, the G9 genotype which has already emerged worldwide was identified in 42% of the 2007 samples with the remaining 33% G1P[8] and 25% G1P(UT) Analysis of the RNA pattern showed that majority of the isolates were long e-type in both series, nevertheless minor differences within electropherotypes were observed. Genetic diversity in some strains of the human group A rotaviruses was analysed by phylogenetic methods. These findings will help in the decision to introduce rotavirus vaccines within the next decade.
    Matched MeSH terms: Diarrhea/genetics*; Rotavirus Infections/genetics*; Rotavirus/genetics*
  18. Zuridah H, Kirkwood CD, Bogdanovic-Sakran N, Bishop RF, Yap KL
    J Med Virol, 2010 Apr;82(4):707-11.
    PMID: 20166178 DOI: 10.1002/jmv.21717
    This study examined the temporal distribution of rotavirus genotypes in Malaysia. Rotaviruses from children with diarrhea admitted to hospitals in 1996 (n = 93) and 2007 (n = 12) in two different regions of Peninsular (West) Malaysia were analyzed for their G and P genotypes using a hemi-nested RT-PCR assay. In the 2007 samples, the dominant strain was G9P[8]. It was identified in 42% of the samples. Different strains all possessing the G1 genotype were identified in the rest of the samples. In contrast, 81% of the samples collected in 1996 were the G1P[8] strain. No strains with G9 genotype were detected in samples collected in 1996.
    Matched MeSH terms: Rotavirus/genetics*
  19. Zuridah H, Bahaman AR, Mohd Azmi ML, Mutalib AR
    Med J Malaysia, 2004 Jun;59(2):153-9.
    PMID: 15559163 MyJurnal
    A total of 157 stool samples were examined for Group A rotaviruses in diarrheic children admitted to 8 different major hospitals in Malaysia. The overall incidence rate in this study was 19.7% (31 of 157) with a variation of 9.5% to 39.1% in different locations. Majority of the infections detected were in those under 2 years of age and there were fewer admissions in the older age group. The stool samples were initially screened for rotavirus Group A by latex agglutination method and followed by RNA electrophoresis. The size and the characteristics wheel-shaped morphology of the viral preparations when examined by electron-microscopy further confirmed the presence of rotaviruses in the positive stool samples. Analysis of the RNA pattern showed that majority of the isolates, 51.6% (16 of 31) were Type IIC ('long' with comigration of RNA segments 7 and 8), 35.5% (11 of 31) with Type IIG ('long' with comigration of segments 7, 8, 9), 9.7% (3 of 31) with Type IG ('short' with comigration of RNA segments 7, 8, 9) and 3.2% (1 of 31) of mixed or atypical pattern. It appeared that over a 12 year interval, only one new or unusual rotavirus electropherotype was found. This is the first comprehensive report on the electropherotypes of rotaviruses covering eight different geographical locations in Malaysia and the data obtained is useful for understanding the geographic distribution and types of rotaviruses transmitting in Malaysia.
    Matched MeSH terms: RNA, Viral/genetics; Rotavirus/genetics*
  20. Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, et al.
    Biol Sex Differ, 2019 03 25;10(1):13.
    PMID: 30909962 DOI: 10.1186/s13293-019-0227-9
    BACKGROUND: The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far.

    METHODS: To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716).

    RESULTS: Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73-0.89, P = 1.49 × 10-5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10-5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47-0.81, P = 4.37 × 10-4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10-2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10-4) and Taiwan datasets (P = 2.99 × 10-2).

    CONCLUSION: Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies.

    Matched MeSH terms: Nasopharyngeal Neoplasms/genetics*; Asian Continental Ancestry Group/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links