Displaying publications 1 - 20 of 220 in total

Abstract:
Sort:
  1. Hii, Y.S., Alias, S.A., Hussin, A., Zakaria, M.P., Moreano, H., Riofrio, M., et al.
    ASM Science Journal, 2009;3(2):143-151.
    MyJurnal
    Surface coverage and some properties soil chemicals were assessed at the Punta Fort William, Greenwich Island during the summer from 1–11 February 2008. Twenty sampling points were established along two strip transects covering a total area of 160 m2. Punta Fort William was basically barren. Rocks, stones and pebbles covered 89.4% of the Punta Fort William. The diversity of vegetation in Punta Fort William was relatively low as compared to other South Shetland Islands. Mosses predominated the area and covered 9.1% of the total surface. Colobantus quitensis was the only vascular plant found at the Punta Fort William. It covered 0.5% of the total surface area. Lichens contributed 0.2% of the surface coverage. Although lichen coverage was low, its frequency of occurrence was among the highest. Total organic carbon (TOC) and total nitrogen (TN) in the study area ranged from 1 g to 39 g C kg–1 and 12 μg to 3892 μg N kg–1, respectively. The level of TOC and TN were comparable to those reported in other maritime locations in Antarctic. Higher levels of TOC and TN were detected in the areas with intensive biological activities. Hydrocarbon concentration was very low in this area and the sources of hydrocarbons were both natural and anthropogenic. The natural hydrocarbons source was mostly biogenic while the petrogenic hydrocarbons input was anthropogenic.
    Matched MeSH terms: Geologic Sediments
  2. Ng ZY, Tan GYA
    Antonie Van Leeuwenhoek, 2018 May;111(5):727-742.
    PMID: 29511956 DOI: 10.1007/s10482-018-1042-8
    Tioman Island is one of many sources for underexplored actinobacterial diversity in Malaysia. Selective isolation, molecular profiling, 16S rRNA gene sequencing and phylogenetic analyses were carried out to highlight the diversity of the marine actinobacterial community in a sediment collected off Tioman Island. A high number of diverse actinobacteria were recovered using skim milk/HEPES pre-treatment on a mannitol-based medium. A total of 123 actinobacterial strains were isolated, including thirty obligate marine actinobacteria putatively identified as Salinispora spp. Molecular fingerprinting profiles obtained with a double digestion approach grouped the remaining non-Salinispora-like strains into 24 different clusters, with Streptomyces and Blastococcus as the major clusters. A total of 17 strains were identified as novel actinobacterial species within the genera Streptomyces (n = 6), Blastococcus (n = 5), Marinactinospora (n = 3), Nocardiopsis (n = 1), Agromyces (n = 1) and Nonomuraea (n = 1) based on 16S rRNA gene sequence analyses. Polyphasic data from three putative Marinactinospora spp. showed that the strains represent a new genus in the Nocardiopsaceae family. Crude extracts from the strains were also found to inhibit the growth of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Providencia alcalifaciens) pathogens. Hierarchical clustering of the bioactivities of an active fraction revealed a unique profile, which is closely related that of fosfomycin.
    Matched MeSH terms: Geologic Sediments/microbiology*
  3. Yii MW, Zaharudin A, Abdul-Kadir I
    Appl Radiat Isot, 2009 Apr;67(4):630-5.
    PMID: 19168367 DOI: 10.1016/j.apradiso.2008.11.019
    Studies of naturally occurring radioactive materials (NORM) distribution of (226)Ra, (228)Ra and (40)K in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastlines. Sediments from 21 coastal locations and 10 near shore locations were collected for analyses. The samples were dried, finely ground, sealed in a container and stored for a minimum of 30 days to establish secular equilibrium between (226)Ra and (228)Ra and their respective radioactive progenies. They were counted using a high-purity germanium (HPGe) spectrometer covering the respective progeny energy peak. For (40)K, the presence of this was measured directly via its 1460 keV energy peak. The concentration of (226)Ra, (228)Ra and (40)K in samples obtained from coastal Sarawak ranged between 23 and 41 (mean 30+/-2) Bq/kg, 27 and 45 (mean 39+/-4) Bq/kg and 142 and 680 (mean 462+/-59) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from coastal Sabah ranged between 16 and 30 (mean 23+/-2) Bq/kg, 23 and 45 (mean 35+/-4) Bq/kg and 402 and 842 (mean 577+/-75) Bq/kg, respectively. For the Sarawak near shore stations, the concentration of (226)Ra, (228)Ra and (40)K ranged between 11 and 36 (mean 22+/-2) Bq/kg, 21 and 65 (mean 39+/-5) Bq/kg and 149 and 517 (mean 309+/-41) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from Sabah ranged between 9 and 31 (mean 14+/-2) Bq/kg, 10 and 48 (mean 21+/-3) Bq/kg and 140 and 580 (mean 269+/-36) Bq/kg, respectively. The calculated external hazard values of between 0.17 and 0.33 (less than unity) showed that there is little risk of external hazard to the workers handling the sediments.
    Matched MeSH terms: Geologic Sediments/chemistry*
  4. Yii MW, Zaharudin A, Norfaizal M
    Appl Radiat Isot, 2007 Dec;65(12):1389-95.
    PMID: 17697782
    The concentrations of 137Cs and 134Cs in Malaysian marine sediments were measured by gamma-ray spectrometry with a high-purity germanium (HPGe) detector connected to a multichannel analyzer. In general, the 137Cs concentration in Malaysian marine sediments has been found to be very low and less than 5 Bq/kg dry weight with the exception of those from a few sampling locations. The concentration of 134Cs was found to be less than the minimum detectable activity for the measuring condition used. Data reported in this paper were found to be comparable with results from within the region and thus can be used as reference data for the country.
    Matched MeSH terms: Geologic Sediments
  5. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Kong YC, Hamzah MS, et al.
    Appl Radiat Isot, 2016 Jan;107:17-23.
    PMID: 26405840 DOI: 10.1016/j.apradiso.2015.09.004
    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82.
    Matched MeSH terms: Geologic Sediments
  6. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Geologic Sediments/chemistry*
  7. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, et al.
    Appl Radiat Isot, 2017 Apr;122:96-105.
    PMID: 28129589 DOI: 10.1016/j.apradiso.2017.01.006
    A study was carried out on the distribution and enrichment of trace elements in the core marine sediments of East Malaysia from three stations at South China Sea and one station each at Sulu Sea and Sulawesi Sea. Five stations of sediment cores were recovered and the vertical concentration profiles of six elements namely Br, Cs, Hf, Rb, Ta, and V were determined using the instrumental neutron activation analysis. The enrichment factor, geoaccumulation index and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. Except for Cs and Hf, which by the enrichment factor are categorized from minimum enrichment to moderate enrichment in all stations and for V and Rb in Sulu Sea and Sulawesi Sea, which are categorized minimum enrichment, other elements are found to be no enrichment at all stations. The geoaccumulation index of Hf in one station shows moderately polluted and for other elements are unpolluted. However, the modified degree values of all samples are less than 1, suggesting very low contamination of elements found in all the stations.
    Matched MeSH terms: Geologic Sediments
  8. Ashraf A, Saion E, Gharibshahi E, Yap CK, Kamari HM, Elias MS, et al.
    Appl Radiat Isot, 2018 Feb;132:222-231.
    PMID: 29183762 DOI: 10.1016/j.apradiso.2017.11.012
    Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia were analyzed for heavy metals by instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The enrichment factor and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42-4.26, 0.50-2.34, 0.31-0.82, 0.20-0.61, 0.91-1.92, 0.23-1.52, and 0.90-1.28, respectively, with the modified degree of contamination values below 0.6. Comparative data showed that coastal East Malaysia has low levels of contamination.
    Matched MeSH terms: Geologic Sediments
  9. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Geologic Sediments/analysis*
  10. Chandrasekar T, Keesari T, Gopalakrishnan G, Karuppannan S, Senapathi V, Sabarathinam C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):183-207.
    PMID: 33392777 DOI: 10.1007/s00244-020-00803-1
    Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
    Matched MeSH terms: Geologic Sediments/chemistry*
  11. Adithya VSP, Chidambaram S, Prasanna MV, Venkatramanan S, Tirumalesh K, Thivya C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):308-318.
    PMID: 33398396 DOI: 10.1007/s00244-020-00798-9
    The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser (0.235-6.453 μSvy-1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any health risks to consumers. The spatial distribution of Rn's effective dose level indicates the higher values were mainly in the central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop plans for management of drinking water resources in the region.
    Matched MeSH terms: Geologic Sediments/chemistry
  12. Dinesh B, Furusawa G, Amirul AA
    Arch Microbiol, 2017 Jan;199(1):63-67.
    PMID: 27506901 DOI: 10.1007/s00203-016-1275-8
    A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12(T), was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12(T) grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12(T) is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01(T). Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12(T) represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12(T) (=LMG 28914(T)=JCM 30880(T)).
    Matched MeSH terms: Geologic Sediments/microbiology*; Geologic Sediments/chemistry
  13. Gallagher JB, Chuan CH, Yap TK, Fredelina Dona WF
    Biol Lett, 2019 05 31;15(5):20180745.
    PMID: 31064310 DOI: 10.1098/rsbl.2018.0745
    Valuing sedimentary 'blue carbon' stocks of seagrass meadows requires exclusion of allochthonous recalcitrant forms of carbon, such as black carbon (BC). Regression models constructed across a Southeast Asian tropical estuary predicted that carbon stocks within the sandy meadows of coastal embayments would support a modest but not insignificant amount of BC. We tested the prediction across three coastal meadows of the same region: one patchy meadow located close to a major urban centre and two continuous meadows contained in separate open embayments of a rural marine park; all differed in fetch and species. The BC/total organic carbon (TOC) fractions in the urban and rural meadows with small canopies were more than double the predicted amounts, 28 ± 1.6% and 36 ± 1.5% (±95% confidence intervals), respectively. The fraction in the rural large-canopy meadow remained comparable to the other two meadows, 26 ± 4.9% (±95% confidence intervals) but was half the amount predicted, likely owing to confounding of the model. The relatively high BC/TOC fractions were explained by variability across sites of BC atmospheric supply, an increase in loss of seagrass litter close to the exposed edges of meadows and sediment resuspension across the dispersed patchy meadow.
    Matched MeSH terms: Geologic Sediments*
  14. Al Farraj DA, Hadibarata T, Yuniarto A, Alkufeidy RM, Alshammari MK, Syafiuddin A
    Bioprocess Biosyst Eng, 2020 Dec;43(12):2305-2314.
    PMID: 32812060 DOI: 10.1007/s00449-020-02415-4
    The present study aimed to determine the degradation and transformation of three-ring PAHs phenanthrene and anthracene by Cryptococcus sp. MR22 and Halomonas sp. BR04 under halophilic conditions. The growth progress of Cryptococcus sp. MR22 and Halomonas sp. BR04 on anthracene and phenanthrene was monitored by colony-forming unit (CFU) technique. The growth of the bacteria was maintained at a maximum concentration of 200 mg/L of all tested hydrocarbon, indicating that Cryptococcus sp. MR22 and Halomonas sp. BR04 significantly perform in the removal of the PAH-contaminated medium at low concentrations. The fit model to represent the biodegradation kinetics of both PAHs was first-order rate equation The extract prepared from cells supplemented with three different substrates exhibited some enzymes such as hydroxylase, dioxygenase, laccase and peroxidase. The results suggest that both strains had an impressive ability in the degradation of aromatic and aliphatic hydrocarbon but also could tolerate in the extreme salinity condition.
    Matched MeSH terms: Geologic Sediments/microbiology*
  15. Mohajeri L, Aziz HA, Isa MH, Zahed MA
    Bioresour Technol, 2010 Feb;101(3):893-900.
    PMID: 19773160 DOI: 10.1016/j.biortech.2009.09.013
    This work studied the bioremediation of weathered crude oil (WCO) in coastal sediment samples using central composite face centered design (CCFD) under response surface methodology (RSM). Initial oil concentration, biomass, nitrogen and phosphorus concentrations were used as independent variables (factors) and oil removal as dependent variable (response) in a 60 days trial. A statistically significant model for WCO removal was obtained. The coefficient of determination (R(2)=0.9732) and probability value (P<0.0001) demonstrated significance for the regression model. Numerical optimization based on desirability function were carried out for initial oil concentration of 2, 16 and 30 g per kg sediment and 83.13, 78.06 and 69.92 per cent removal were observed respectively, compare to 77.13, 74.17 and 69.87 per cent removal for un-optimized results.
    Matched MeSH terms: Geologic Sediments
  16. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Geologic Sediments/microbiology*
  17. Ser HL, Tan WS, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, et al.
    Braz J Microbiol, 2017 09 06;49(1):13-15.
    PMID: 28927873 DOI: 10.1016/j.bjm.2017.01.013
    As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825bp with G+C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.
    Matched MeSH terms: Geologic Sediments/microbiology*
  18. Sow AY, Ismail A, Zulkifli SZ
    Bull Environ Contam Toxicol, 2013 Jul;91(1):6-12.
    PMID: 23666324 DOI: 10.1007/s00128-013-1009-4
    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
    Matched MeSH terms: Geologic Sediments/analysis*
  19. Sohrabi T, Ismail A, Nabavi MB
    Bull Environ Contam Toxicol, 2010 Nov;85(5):502-8.
    PMID: 20957347 DOI: 10.1007/s00128-010-0112-z
    Surface sediments along the south of Caspian Sea were collected to evaluate the contamination of heavy metals. The result ranged (μg/g, Fe% dw): Pb(13.06-33.48); Ni(18.01-69.63); Cd(0.62-1.5); Zn(30.11-87.88); Cu(5.86-26.37) and Fe(1.8-4%) respectively. Cadmium showed higher EF when compared to other sites. Geoaccumulation Index value for Cd in most stations was classified as moderately contaminated and moderately to strongly contaminated, as well as the average of I(geo) of Cd (1.77 ± 0.35) suggested that surface sediments of Caspian coast were moderately polluted by this metal. The result of the Pearson correlation showed that there were significant positive associations between Ni, Cd and Zn (r = 0.44-0.76; p < 0.01).
    Matched MeSH terms: Geologic Sediments/chemistry*
  20. Mohajeri L, Aziz HA, Isa MH, Zahed MA, Mohajeri S
    Bull Environ Contam Toxicol, 2010 Jul;85(1):54-8.
    PMID: 20577869 DOI: 10.1007/s00128-010-0058-1
    Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
    Matched MeSH terms: Geologic Sediments/analysis; Geologic Sediments/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links