Displaying publications 1 - 20 of 114 in total

Abstract:
Sort:
  1. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Groundwater
  2. Stephen Ambu, Stacey Foong Yee Yong, Yvonne Ai Lian Lim, Mak Joon Wah, Donald Koh Fook Chen, Soo Shen Ooi, et al.
    MyJurnal
    Background: The public health issue of consuming groundwater is a major concern because people often extract groundwater directly from the aquifers either through wells or boreholes without treating it with any form of filtration system or chlorine disinfection. Based on the Malaysian National Drinking Water guidelines the current study was designed to provide a better understanding on the variable factors that are influencing the quality of well-water in an urbanised village in Malaysia. Well water quality assessment of heavy metals, chemicals, microbial and physical parameters were carried out for Sungai Buloh Village in the Klang Valley to ensure it was safe for human consumption.

    Materials and Methods: Water samples were collected from wells at four sites (Sites A,B,C,D), a river and a tap inside a house in Sungai Buloh village. Soil was sampled from the riverbed and area surrounding the wells. Samples were collected every two months over a one year duration from all sites. The water samples were processed and examined for viruses, coliforms and protozoa as well as for heavy metal contaminants.

    Results: The turbidity and colour ranged in the average of 0.57-0.13 Nephelometric Turbidity (NTU) and 4.16-5.00 Total Conjunctive Use (TCU) respectively for all sites except Site C. At Site C the turbidity level was 2.56 ± 1.38 NTU. The well-water was polluted with coliforms (1.2 to 2.4 x 103 CFU/100 ml) in all sites, E. coli (0.12 - 4 x 102 CFU/100 ml CFU/ 100 ml) and Cryptosporidium oocysts (0.4 cysts/100 ml). All the heavy metals and chemical parameters were within the Malaysian Guidelines’ limits except manganese. The average pH ranged from 5.44 - 6.62 and the temperature was 28 ºC.

    Conclusion: In summary, the well water at Sungai Buloh is considered unsafe for consumption due to pollution. Therefore the major thrust will be to provide better quality of drinking water to the residents of the village.
    Matched MeSH terms: Groundwater
  3. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
    Matched MeSH terms: Groundwater
  4. Ramesh M, Malathi N, Ramesh K, Aruna RM, Kuruvilla S
    J Pharm Bioallied Sci, 2017 Nov;9(Suppl 1):S88-S91.
    PMID: 29284943 DOI: 10.4103/jpbs.JPBS_77_17
    Background: High levels of fluoride in the drinking water, especially ground water, results in skeletal fluorosis which involves the bone and major joints. This study was conducted to assess the prevalence of skeletal fluorosis to compare with dental fluorosis in an endemically fluorosed population in the District of Salem, Tamil Nadu.

    Materials and Methods: Institutional ethical clearance was obtained. A total of 206 patients who reported to the Department of Hematology for blood investigations were the participants in this study. Age, sex, place, weight, height, dental fluorosis, and skeletal complaints were noted down. Body mass index was calculated, and statistical analysis was performed.

    Results: Dental fluorosis was present in 63.1% and absent in 36.9% of the samples reported. Skeletal fluorosis was present in 24.8% and was absent in 75.2%. A large number of the patients had knee pain and difficulty in bending. Chi-square test was used for statistical analysis. Skeletal fluorosis and age were compared and P value was 0.00 and was significant. Dental fluorosis and skeletal fluorosis were compared and P value was found to be 0.000 and significant.

    Discussion and Conclusion: There is a need to take measures to prevent dental and skeletal fluorosis among the residents of Salem district. Calcium balance should be maintained, and fluoride intake should be minimized to reduce the symptoms. The government should provide water with low fluoride level for drinking and cooking. Once the symptoms develop, treatment largely remains symptomatic, using analgesics and physiotherapy.

    Matched MeSH terms: Groundwater
  5. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Groundwater/chemistry*
  6. Phan K, Kim KW, Hashim JH
    Environ Res, 2014 Nov;135:37-41.
    PMID: 25262072 DOI: 10.1016/j.envres.2014.07.031
    We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p<0.01). Arsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb≤44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs≤5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms.
    Matched MeSH terms: Groundwater/chemistry*
  7. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al.
    Ecotoxicol Environ Saf, 2019 Oct 30;182:109362.
    PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
    Matched MeSH terms: Groundwater/chemistry*
  8. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Zaudi MA, Aris AZ
    ScientificWorldJournal, 2014;2014:796425.
    PMID: 25574493 DOI: 10.1155/2014/796425
    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific weight to the theoretical assumptions on the effects of pumping on seawater intrusion and upconing.
    Matched MeSH terms: Groundwater
  9. Balkhair KS, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S32-44.
    PMID: 26858563 DOI: 10.1016/j.sjbs.2015.09.023
    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study.
    Matched MeSH terms: Groundwater
  10. Rahman MNIA, Jeofry H, Basarian MS
    Data Brief, 2020 Oct;32:106194.
    PMID: 32904202 DOI: 10.1016/j.dib.2020.106194
    The survey data on potential aquifer was collected at two sites located in Banggi Island (i.e. Laksian Primary School [LPS] and Padang Primary School [PPS]), Malaysia on 25 and 26 April 2013. Both locations are geologically surrounded by various types of lithologies, namely, sandstone, mudstone, siltstone, shale, chert, conglomerate, lignite, tuff, limestone, terrace sand, gravel and coral. The resistivity data consisted of six-line pole-dipole short arrays and were recorded in-situ using SAS 4000 ABEM Lund Imaging System, together with a relay switching unit (Electrode Selector ES 464), six multiconductor cables, steel rod electrodes and jumpers. The data, namely electrode spacing, depth of investigation, subsurface resistivity, type of material and horizontal data coverage were used to assess the characteristics of the potential aquifer. The recorded data were then processed using RES2DINV software to obtain 2-D inversion model of the subsurface. The data were also equipped with six models of inverse resistivity section for both areas. The data obtained can be used by the government and stakeholders for groundwater exploration and extraction in order to provide water supplies for local communities, especially since access to these resources from the surrounding water treatment plants on the island is limited.
    Matched MeSH terms: Groundwater
  11. Attias E, Thomas D, Sherman D, Ismail K, Constable S
    Sci Adv, 2020 Nov;6(48).
    PMID: 33239299 DOI: 10.1126/sciadv.abd4866
    Conventional hydrogeologic framework models used to compute ocean island sustainable yields and aquifer storage neglect the complexity of the nearshore and offshore submarine environment. However, the onshore aquifer at the island of Hawai'i exhibits a notable volumetric discrepancy between high-elevation freshwater recharge and coastal discharge. In this study, we present a novel transport mechanism of freshwater moving from onshore to offshore through a multilayer formation of water-saturated layered basalts with interbedded low-permeability layers of ash/soil. Marine electromagnetic imaging reveals ∼35 km of laterally continuous resistive layers that extend to at least 4 km from west of Hawai'i's coastline, containing about 3.5 km3 of freshened water. We propose that this newly found transport mechanism of fresh groundwater may be the governing mechanism in other volcanic islands. In such a scenario, volcanic islands worldwide can use these renewable offshore reservoirs, considered more resilient to climate change-driven droughts, as new water resources.
    Matched MeSH terms: Groundwater
  12. Arifin MH, Kayode JS, Ismail KI, Abdullah M, Embrandiri A, Nazer SM, et al.
    Data Brief, 2020 Dec;33:106595.
    PMID: 33318980 DOI: 10.1016/j.dib.2020.106595
    Industrial, and municipal wastes are part of the main sources of environmental hazards as well as groundwater and surface water pollutions. If not well composed, treated, and safely disposed, it could permeate through the subsurface lithologies by reaching down to the underground water aquifers, particularly in zones of unprotected aquifer units. Pollutants, most especially the landfills leachates that encompassed organic contaminants, ammonia, nitrates, total nitrogen, suspended solids, heavy metals and soluble inorganic salts, i.e., soluble nitrogen, sulphur compound, sulphate and chlorides, could posed undesirable environmental impacts due to inappropriate disposals that may give rise to gaseous fumes and leachate formations. An electrical resistivity geophysical technique utilizing the RES2D no-invasive, cost-effective and rapid method of data collection was integrated with the 3D Oasis Montaj software to approximate the volume of the generated rectangular prism model of the contaminants delineated from mixtures of the industrial, and municipal wastes plumes to be 312,000 m 3.
    Matched MeSH terms: Groundwater
  13. Rathi BS, Kumar PS, Show PL
    J Hazard Mater, 2021 05 05;409:124413.
    PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413
    Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
    Matched MeSH terms: Groundwater
  14. Kandasamy, R., Azme, Hashim, I., Ismoen, M.
    ASM Science Journal, 2008;2(1):23-33.
    MyJurnal
    The effect of chemical reaction and variable viscosity on mixed convection heat and mass transfer for Hiemenz flow over a porous wedge plate was studied in the presence of heat radiation. The wall of the wedge was embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and had a power-law variation of both the wall temperature and concentration. The fluid was assumed to be viscous and incompressible. Numerical calculations were carried out for different values of dimensionless parameters and an analysis of the results obtained showed that the flow field was influenced appreciably by the buoyancy ratio between species, thermal diffusion and suction/injection at wall surface. The effects of these major parameters on the transport behaviours were investigated methodically and typical results illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions. Comparisons with previously published works were performed and excellent agreement between the results were obtained. It is predicted that this research might prove to be useful for study of the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of underground water, in filtration, and water purification processes.
    Matched MeSH terms: Groundwater
  15. Sangok FE, Maie N, Melling L, Watanabe A
    Sci Total Environ, 2017 Jun 01;587-588:381-388.
    PMID: 28242223 DOI: 10.1016/j.scitotenv.2017.02.165
    To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2fluxes from the three soils ranged from 78 to 625mgCm-2h-1with a negative correlation to groundwater level. The CH4fluxes ranged from -67 to 653μgCm-2h-1. Both total CO2and CH4fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1for the MPS soil and 0.066y-1for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.
    Matched MeSH terms: Groundwater
  16. Ahmad Saat, Nor Shazlina Zainal, Zaini Hamzah
    MyJurnal
    Ground water contain natural radioactivity associated with uranium and thorium that present naturally in rocks and soils. Humans may be exposed to the emission of energetic alpha particle from supported radon decaying process in this water when it is inhaled or ingested. Assessment of supported radon in ground water was carried out using fourteen ground water samples from Cameron Highlands. The measurement was accomplished by degassing the water samples using pump and then allowing the gas to flow into specially constructed 0.0191 m8 metal chamber. The activity concentration of supported radon in water sample was measured using continuous radon monitor inside the radon chamber. Measurement was carried out at one hour interval for twenty four hours. The hourly supported radon concentration was found to stabilize after about 8 hours. The stabilized concentration was used to determine supported radon activity concentration in the water samples. Results of the study show that depending on the sampling location, the activity concentrations of supported radon are in the range from 0.09 - 0.48 Bq/L which is lower than the activity concentration of radon in drinking water as proposed by USEPA (11 Bq/L).
    Matched MeSH terms: Groundwater
  17. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, et al.
    Sci Total Environ, 2018 Sep 01;634:853-867.
    PMID: 29653429 DOI: 10.1016/j.scitotenv.2018.04.055
    The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers.
    Matched MeSH terms: Groundwater
  18. Sheikhy Narany T, Aris AZ, Sefie A, Keesstra S
    Sci Total Environ, 2017 Dec 01;599-600:844-853.
    PMID: 28501010 DOI: 10.1016/j.scitotenv.2017.04.171
    The conversions of forests and grass land to urban and farmland has exerted significant changes on terrestrial ecosystems. However, quantifying how these changes can affect the quality of water resources is still a challenge for hydrologists. Nitrate concentrations can be applied as an indicator to trace the link between land use changes and groundwater quality due to their solubility and easy transport from their source to the groundwater. In this study, 25year records (from 1989 to 2014) of nitrate concentrations are applied to show the impact of land use changes on the quality of groundwater in Northern Kelantan, Malaysia, where large scale deforestation in recent decades has occurred. The results from the integration of time series analysis and geospatial modelling revealed that nitrate (NO3-N) concentrations significantly increased with approximately 8.1% and 3.89% annually in agricultural and residential wells, respectively, over 25years. In 1989 only 1% of the total area had a nitrate value greater than 10mg/L; and this value increased sharply to 48% by 2014. The significant increase in nitrate was only observed in a shallow aquifer with a 3.74% annual nitrate increase. Based on the result of the Autoregressive Integrated Moving Average (ARIMA) model the nitrate contamination is expected to continue to rise by about 2.64% and 3.9% annually until 2030 in agricultural and residential areas. The present study develops techniques for detecting and predicting the impact of land use changes on environmental parameters as an essential step in land and water resource management strategy development.
    Matched MeSH terms: Groundwater
  19. Abdul Rashid, Abdullah, Ariful, Islam
    MyJurnal
    Readymade garments (RMG) industry of Bangladesh are lesser revealed to sustainable outlines that originating avoidance related with standard health and safety provisions, labor rights, women safety, child labor, pollution, waste disposal and ground water depletion. Recently there are also several safety hazards by way of fire incidents and building collapses which caused death and injury of thousand or garment workers at Bangladesh. Actually a suitable sustainable development scheme for this industry includes the insights of proper employee involvement based upon what is known (knowledge) and done (behavior). So the study aims to investigate the relationship between knowledge and behavior which reflects the complication between what is in fact known and what is done in case of sustainable issues. The study has used both questionnaire survey and interview procedures on 10 BGMEA registered factories of Chittagong to recognize the connection between knowledge and behavior. The target populace of the study has been limited only to the white collar employees. However, the study identified that employee knowledge and behavior of sustainable development contains a moderate, positive relationship (r=.315, n=150, p
    Matched MeSH terms: Groundwater
  20. Ainon Hamzah, Tavakoli A, Amir Rabu
    Sains Malaysiana, 2011;40:1231-1235.
    Toluene (C7H8) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monoxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene.
    Matched MeSH terms: Groundwater
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links