Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Dewi WN, Zhou Q, Mollah M, Yang S, Ilankoon IMSK, Chaffee A, et al.
    Waste Manag, 2024 Apr 30;179:99-109.
    PMID: 38471253 DOI: 10.1016/j.wasman.2024.03.007
    Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.
    Matched MeSH terms: Hazardous Substances
  2. Singh RB, Patra KC, Pradhan B, Samantra A
    J Environ Manage, 2024 Feb 14;352:120091.
    PMID: 38228048 DOI: 10.1016/j.jenvman.2024.120091
    Water is a vital resource supporting a broad spectrum of ecosystems and human activities. The quality of river water has declined in recent years due to the discharge of hazardous materials and toxins. Deep learning and machine learning have gained significant attention for analysing time-series data. However, these methods often suffer from high complexity and significant forecasting errors, primarily due to non-linear datasets and hyperparameter settings. To address these challenges, we have developed an innovative HDTO-DeepAR approach for predicting water quality indicators. This proposed approach is compared with standalone algorithms, including DeepAR, BiLSTM, GRU and XGBoost, using performance metrics such as MAE, MSE, MAPE, and NSE. The NSE of the hybrid approach ranges between 0.8 to 0.96. Given the value's proximity to 1, the model appears to be efficient. The PICP values (ranging from 95% to 98%) indicate that the model is highly reliable in forecasting water quality indicators. Experimental results reveal a close resemblance between the model's predictions and actual values, providing valuable insights for predicting future trends. The comparative study shows that the suggested model surpasses all existing, well-known models.
    Matched MeSH terms: Hazardous Substances
  3. Wu Y, Liu Y, Kamyab H, Rajasimman M, Rajamohan N, Ngo GH, et al.
    Environ Res, 2023 Sep 01;232:116363.
    PMID: 37295587 DOI: 10.1016/j.envres.2023.116363
    Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
    Matched MeSH terms: Hazardous Substances/toxicity
  4. Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, et al.
    Microorganisms, 2021 Apr 13;9(4).
    PMID: 33924471 DOI: 10.3390/microorganisms9040823
    Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
    Matched MeSH terms: Hazardous Substances
  5. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    J Hazard Mater, 2021 03 15;406:124282.
    PMID: 33199149 DOI: 10.1016/j.jhazmat.2020.124282
    Environmental hazards, industrial, and municipal wastes geochemical and geophysical assessments were carried out at an industrial waste disposal (IWD) site at Bukit Kepong, Kuala Lumpur, Malaysia. RES2-D geophysical method was applied, capable of identification and quantification of the industrial wastes; buried hazardous materials (BHM) and their effects on the subsurface stratum, from the moderately saturated zones, to fully saturated zones housing the aquifer units underneath the water table. Six RES2-D survey profiles were respectively acquired along E-W, and N-S directions. The perpendicular arrangement of the RES2-D survey lines, was tenaciously designed to make possible, the industrial waste materials (IWM)and municipal solid waste (MSW) quantification, with sufficient length of survey lines set at 200 m, and electrode spacing of 5 m, to cover as much details segments of the IWM and MSW as possible. The six RES2-D inversion results, helped in the subsurface stratum classification into three layers, namely; soft layers, which encompasses the waste materials, with varied resistivity values i.e., 0-100 Ω-m, at 10-15 m depths. The consolidated layers produced varied resistivity values i.e., 101-400 Ω-m, at 15-20 m depths. The bedrock has the highest resistivity values i.e., 401-2000 Ω-m, at depths > 20 m. The estimated volume of the waste materials was 312,000 m 3, using 3-D Oasis Montaj modeling via rectangular prism model generated from the inverted RES2-D. Results from the geochemical analysis helped in the validation of the site as a potential contaminated zone with severe health effects.
    Matched MeSH terms: Hazardous Substances
  6. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Hazardous Substances
  7. Ahmad Zaimi Mohd Zawawi, Shazatul Izzati Sha’aree
    MyJurnal
    Termites encompass a various range of destruction of crops and capable of decomposing woods. The widely being used of hazardous chemical pesticides has develop many health problems to the users. Hence, the aim of this study was to substitute the use of hazardous chemical pesticides to herbs based pesticides as repellent agent against rubber termites (Coptotermes curvignathus), which is safer and easier to use. The selected herbs species for this study are lemongrass (Cymbopogon citratus), garlic (Allium sativum) and wild mint (Mentha arvensis). As for C.curvignathus, they were obtained from Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia. Khaya wood (Khaya senegalensis) (3cm x 2cm x 2cm) is the woods sample that being used. All woods samples were treated with all the selected herbs extract. The repellent testing was conducted for 21 days. The result obtained showed that the three herbs were effective to be used as repellent when compared to percentage weight loss of control, which is 23.58%. The percentages of weight loss of treated groups using aqueous extraction of herbs were 0.61% (lemongrass), 1.56% (mint), and 1.72% (garlic), whereas for methanol extraction of herbs were 0.52% (lemongrass), 1.13% (mint) and 1.55% (garlic). From Analysis of Variance (ANOVA), there is significant different in mean among group with F=275.49, p- value=0.000
    Matched MeSH terms: Hazardous Substances
  8. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
    Matched MeSH terms: Hazardous Substances
  9. Salvaraji L, Jeffree MS, Avoi R, Atil A, Mohd Akhir H, Shamsudin SBB, et al.
    J Public Health Res, 2020 Oct 14;9(4):1994.
    PMID: 33312989 DOI: 10.4081/jphr.2020.1994
    An increasing amount of waste concurrently further extends the risk of exposure to hazardous material among waste collectors. In light of the COVID-19 crisis, municipal waste collectors are one of the most at-risk groups of SARS-Cov-2 exposure. Risk assessment included hazard identification, evaluation of existing control level at the workplace, estimation of likelihood and severity of hazard, risk determination, and control measure recommendations. Five waste collection activities were identified and reviewed. High-risk exposure includes collection of garbage, mechanical manipulation of compactor lorries and unloading of garbage at the disposal site. There is poor practice of personal hygiene and unestablished continuous monitoring of personal protective equipment supplies. The preventive measures in the waste collection industry are influenced by several factors. Until the preventive measures are adopted into practice and adapted according to each company's requirements, biological agents continue to be risk factor to the health workers.
    Matched MeSH terms: Hazardous Substances
  10. Karthikeyan V, Gnanamoorthy G, Varun Prasath P, Narayanan V, Sagadevan S, Umar A, et al.
    J Nanosci Nanotechnol, 2020 Sep 01;20(9):5759-5764.
    PMID: 32331175 DOI: 10.1166/jnn.2020.17898
    Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.
    Matched MeSH terms: Hazardous Substances
  11. Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud K, et al.
    Ecotoxicol Environ Saf, 2020 Jun 15;196:110527.
    PMID: 32278138 DOI: 10.1016/j.ecoenv.2020.110527
    Assessment of eco-toxicant using bioluminescent bacterial assay is a widely used and globally accepted method. In this work, a new luminescent bacterium was isolated from squid (Loligo duvauceli) and identified as Photobacterium leiognathi strain AK-MIE using 16S rRNA, phylogeny analysis. The predicted optimum conditions by RSM were 2.76% (w/v) NaCl, 2.28% (w/v) peptone, 0.34% (w/v) yeast extract, and pH 6.83 with 541,211.80 RLU of luminescent production whereas the predicted optimum conditions by ANN were 2.21% (w/v) NaCl, 2.27% (w/v) peptone, 0.39% (w/v) yeast extract, and pH 6.94 which produced 541,986.20 RLU. The validation analysis of both RSM and ANN show 0.60% and 0.69% deviation from the predicted results indicating that both models provided good quality predictions with ANN showing a superior data fitting capability for non-linear regression analysis. Toxicity tests show strain AK-MIE was sensitive to mercury (concentration causing 50% inhibition or IC50 of 0.00978 mgL-1), followed by cadmium (IC50 of 0.5288 mgL-1), copper IC50 of (0.8117 mgL-1), silver (IC50 of 1.109 mgL-1), and lead (IC50 of 10.71 mgL-1) which are more sensitive than previously isolated luminescent bacteria, suggesting that strain AK-MIE has the potential to be used in toxicity assessment of heavy metals in the environment. Based on the field trial results, several sediment samples from industrial areas in Bangi, Selangor managed to inhibit the bioluminescence of strain AK-MIE. Validation method carried out using ICP-MS proved the presence of several toxic heavy metal elements.
    Matched MeSH terms: Hazardous Substances/analysis*; Hazardous Substances/toxicity
  12. Baharuddin SH, Mustahil NA, Reddy AVB, Abdullah AA, Mutalib MIA, Moniruzzaman M
    Chemosphere, 2020 Jun;249:126125.
    PMID: 32058133 DOI: 10.1016/j.chemosphere.2020.126125
    The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in the present study, we have synthesized five ionic liquids (ILs) namely 1-butyl-3-methylimidazolium lauroylsarcosinate, 1,1'-(1,4-butanediyl)bis(1-H-pyrrolidinium) dodecylbenzenesulfonate, tetrabutylammonium citrate, tetrabutylammonium polyphosphate and tetrabutylammonium ethoxylate oleyl ether glycolate, and formulated a water based ILs dispersant combining the synthesized ILs at specified compositions. The effectiveness of formulated ILs dispersant was found between 70.75% and 94.71% for the dispersion of various crude oils ranging from light to heavy. Further, the acute toxicity tests against zebra fish and grouper fish have revealed the practically non-toxic behaviour of formulated ILs dispersant with LC50 value greater than 100 ppm after 96 h. In addition, the formulated ILs dispersant has provided excellent biodegradability throughout the test period. Overall, the formulated new ILs dispersant is deemed to facilitate environmentally benign oil spill remediation and could effectively substitute the use of hazardous chemical dispersants in immediate future.
    Matched MeSH terms: Hazardous Substances
  13. Ooi L, Okazaki K, Arias-Barreiro CR, Heng LY, Mori IC
    Chemosphere, 2020 May;247:125933.
    PMID: 32079055 DOI: 10.1016/j.chemosphere.2020.125933
    Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 μL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale.
    Matched MeSH terms: Hazardous Substances
  14. Salvaraji L, Jeffree MS, Avoi R, Akhir HM, Rahim SSSA, Lukman KA
    Medeni Med J, 2020;35(4):304-309.
    PMID: 33717622 DOI: 10.5222/MMJ.2020.82246
    Objective: Increasing amount of waste concurrently increases the risk of exposure to hazardous materials among waste collectors. Vigorous exertion in the field intensifies the abundance of contaminated inspirable droplets. If left undetected and untreated, it may provoke significant pernicious health effects and redundant burdens to employees and employers. The purpose of this study is to determine the prevalence of respiratory symptoms and their associated factors among domestic waste collectors.

    Method: A cross-sectional study was conducted in Kota Kinabalu, Sabah between January and April 2020. Data were collected using a validated questionnaire which encompasses details about sociodemographic, health status, environment, and employment characteristics.

    Results: A total of 290 waste collectors with a mean age of 40 (±9) years old were participated in the study. Most of them were from Kadazan-Dusun-Murut ethnic origin with educational background till secondary school. The average monthly income of the workers was USD 298.45 (±171.9) per month, and they had been in service for 11 (±9.04) years. Respiratory symptoms were seen in 21% of the workers. The identified significant risk factors were determined as underlying chronic diseases (OR=2.34; 95% CI=1.054, 5.219) and contact with pets (OR=1.87; 95% CI=1.004, 3.288).

    Conclusion: Respiratory symptoms are prevalent amidst domestic waste collectors and related to their health and field activities.

    Matched MeSH terms: Hazardous Substances
  15. Ghaffari Khaligh N, Mihankhah T, Titinchi S, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(4):1100-1109.
    PMID: 33488215 DOI: 10.3906/kim-2005-6
    This work introduces a new additive named 4,4'-trimethylenedipiperidine for the practical and ecofriendly preparation of ethyl 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate derivatives. This chemical is commercially available and easy to handle. It also possesses a low melting point and a broad liquid range temperature, high thermal stability, and good solubility in water. Based on green chemistry principles, the reaction was performed in a) a mixture of green solvents i.e. water and ethanol (1:1 v/v) at reflux temperature, and b) the additive was liquefied at 65 °C and the reaction was conducted in the liquid state of the additive. High yields of the desired triazolo-pyrimidines were obtained under both aforementioned conditions. Our results demonstrated that this additive, containing 2 Lewis base sites and able to act as an acceptor-donor hydrogen bonding group, is a novel and efficient alternative to piperidine, owing to its unique properties such as its reduced toxicity, nonflammable nature, nonvolatile state, broad liquid range temperature, high thermal stability, and ability to be safely handled. Furthermore, this additive could be completely recovered and exhibited high recyclability without any change in its chemical structure and no significant reduction in its activity. The current methodology has several advantages: (a) it avoids the use of hazardous materials, as well as toxic, volatile, and flammable solvents, (b) it does not entail tedious processes, harsh conditions, and the multistep preparation of catalysts, (c) it uses a metal-free and noncorrosive catalyst, and (d) reduces the generation of hazardous waste and simple work-up processes. The most important result of this study is that 4,4'-trimethylenedipiperidine can be a promising alternative for toxic, volatile, and flammable base reagents in organic synthesis owing to its unique properties.
    Matched MeSH terms: Hazardous Substances
  16. Ang TK, Safuan HM, Sidhu HS, Jovanoski Z, Towers IN
    Bull Math Biol, 2019 07;81(7):2748-2767.
    PMID: 31201660 DOI: 10.1007/s11538-019-00627-8
    The present paper studies a predator-prey fishery model which incorporates the independent harvesting strategies and nonlinear impact of an anthropogenic toxicant. Both fish populations are harvested with different harvesting efforts, and the cases for the presence and non-presence of harvesting effort are discussed. The prey fish population is assumed to be infected by the toxicant directly which causes indirect infection to predator fish population through the feeding process. Each equilibrium of the proposed system is examined by analyzing the respective local stability properties. Dynamical behavior and bifurcations are studied with the assistance of threshold conditions influencing the persistence and extinction of both predator and prey. Bionomic equilibrium solutions for three possible cases are investigated with certain restrictions. Optimal harvesting policy is explored by utilizing the Pontryagin's Maximum Principle to optimize the profit while maintaining the sustainability of the marine ecosystem. Bifurcation analysis showed that the harvesting parameters are the key elements causing fishery extinction. Numerical simulations of bionomic and optimal equilibrium solutions showed that the presence of toxicant has a detrimental effect on the fish populations.
    Matched MeSH terms: Hazardous Substances/toxicity
  17. Reuben U, Ismail AF, Ahmad AL, Maina HM, Daud A
    PMID: 31013942 DOI: 10.3390/ijerph16081334
    : The chemicals from laboratories pose a significant risk forinducing erythema, an abnormal redness of the skin, as a result of poor occupational and environmental factors that promote hypersensitivity to a chemical agent. The aim of this present study was to determine the occupational and environmental risk factors influencing the inducement of erythema in laboratory workers due to exposure to chemicals. This was a cross-sectional study on a population-based sample of Nigerian university laboratory workers. Data were collected using the erythema index meter and an indoor air control meter. The study included 287 laboratory workers. The laboratory workers who properly used personal protective equipment (PPE) were 60% less likely to have induced erythema (adjusted odds ratio (AOR) = 0.40; 95% confidence interval CI: 0.22-0.77; probability value p = 0.011). The chemical mixture exceeding the permissible exposure limit (PEL) was found to have a small effect in inducing the erythema (AOR = 4.22; 95%CI: 2.88-12.11; p = 0.004). Most of the sampled laboratories where the respondents worked had unsuitable temperatures (AOR = 8.21; 95% CI: 4.03-15.01; p = 0.001). Erythema was more frequently found in the respondents who spent 4-5h in the laboratory (AOR = 3.11; 95%CI: 1.77-9.23; p = 0.001). However, high levels of ventilation reduce the likelihood of erythema in a laboratory by 82% (0.18). Multiple logistic regressions revealed that PPE, PEL, exposure time, temperature, and ventilation were the probable predictive factors associated with the inducement of erythema. Providing better educational knowledge and improving the attitude towards hazards and safety in a laboratory would lead to reduced rates of new cases.
    Matched MeSH terms: Hazardous Substances/toxicity*
  18. Manivasagam, Dayanath
    MyJurnal
    The Department of Occupational Safety and Health Malaysia (DOSH) is the authority responsible to safeguard the occupational safety, health and welfare of workers in Malaysia. Occupational noise-related hearing disorders are the leading type of occupational diseases recorded by DOSH every year. Occupational Health Doctor (OHD) is a competency recognized by DOSH and their scope of duties in industries is currently confined to conduct medical surveillance for workers with hazardous chemical exposure and confined space medical fitness examination. The duties of OHD are good to be expanded by empowering more of their roles in industrial activities involving other legislations under DOSH. The noise exposure regulation under the Factories and Machinery Act (FMA) 1967 has been governing the worker’s exposure to hazardous industrial noise and preventing noise-induced hearing loss (NIHL) since 1989. However, the provisions of the regulation need to be strengthened in some essential medical elements of the Hearing Conservation Programme (HCP) for a comprehensive prevention of NIHL at the workplace. Recently enacted Occupational Safety and Health (Noise Exposure) Regulations 2019 offer a wider coverage of workers in ten sectors of industries applicable under the Occupational Safety and Health Act (OSHA) 1994. The current regulatory requirements for management of workplace noise have many improvements compared to the existing law. Enhancement in the medical requirements of industrial audiometry is made prominent by involving OHDs to interpret audiograms and conduct medical examination for workers. The reporting of occupational noise-related hearing disorders to DOSH is outlined better in the new regulation. The occurrence of NIHL and other related hearing disorders are expected to reduce eventually after the introduction of Occupational Safety and Health (Noise Exposure) Regulations 2019. The OHDs will play a pivotal role in industrial audiometry and prevention of hearing disorders among the working population.
    Matched MeSH terms: Hazardous Substances
  19. Mohammed Taher Alfates, Biak, Dayang Radiah Awang
    MyJurnal
    Transport of fuel is essential to ensure supplies are delivered as per requested by the industrial sites or other demands. Numerous accidents have been reported and recorded in which loss of containment of hazardous chemicals occurred and led to disastrous outcomes. This paper presents the analysis of Boiling Liquid Expanding Vapour Explosion (BLEVE) due to loss of containment for Liquefied Petroleum Gas (LPG) road tankers. The main objective of this paper is to evaluate the potential consequences resulting from overpressure blast and thermal radiation of tankers carrying LPG to the people and the surrounding. The aim is also to compare the outcomes obtained from PHAST software simulator 8.11 with that of established mathematical model. Malaysia North-south Expressway (NSE) was selected as the location of the incident. The volume, weather parameters and properties of LPG were identified. It was found that the effect of BLEVE on people and structures was catastrophic. The results obtained from the mathematical model were similar with that modelled using PHAST software simulator.
    Matched MeSH terms: Hazardous Substances
  20. Muhammad Firdaus Othman,, Nor Aimi Abdul Wahab, Suhaiza Hasan, Marina Mokhtar, Noorezal Atfyinna Mohd Napiah, Mohd Noor Mokhtar, et al.
    Jurnal Inovasi Malaysia, 2019;2(2):123-139.
    MyJurnal
    Teaching, learning and reseach activities in chemical laboratory usually involves a variety of hazardous chemicals. All chemicals stored in the laboratories should be accompanied by a safety data sheet which contains information such as chemical composition, safety precautions for handling and storing chemicals and emergency measures in case of accident. Ineffective management of chemical safety data sheet makes it difficult to access and resulting in slow action taken in the event of accident. To overcome this problem, Quisy-SDS was introduced to ensure a more effective chemical safety information management. Quisy-SDS provides a convenient method for all lab users and emergency respondents to acess the chemical safety information. This method uses a Quick Response (QR) code and website that allow users to acess the information in no time, anytime and anywhere. The use of Quisy-SDS has successfully reduced the search time of chemical safety information by 98% compared to the previous method.
    Matched MeSH terms: Hazardous Substances
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links