Displaying publications 1 - 20 of 747 in total

Abstract:
Sort:
  1. Khalid NA, Rajandas H, Parimannan S, Croft LJ, Loke S, Chong CS, et al.
    3 Biotech, 2019 Oct;9(10):364.
    PMID: 31588388 DOI: 10.1007/s13205-019-1892-4
    Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown positive results, both in mitigating otherwise environmentally damaging waste streams and producing a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12-week-old EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S metagenome sequencing. Over ten phyla were detected, with Chloroflexi being the predominant phylum, representing approximately 53% of compost and 23% of the POME microbiome reads. The main bacterial lineage found in the compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of the total gene fragments, respectively. The significant differences between compost and POME communities were abundances of Syntrophobacter, Sulfuricurvum and Coprococcus. No methanogens were identified due to the bias in general 16S primers to eubacteria. The preponderance of anaerobic species in the compost and high abundance of secondary metabolite fermenting bacteria is due to an extended composting time, with anaerobic collapse of the pile due to the tropical heat. Predictive functional profiles of the metagenomes using 16S rRNA marker genes suggest that the presence of enzymes involved in degradation of polysaccharides such as glucoamylase, endoglucanase and arabinofuranosidase, all of which were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were present in both samples.
    Matched MeSH terms: Hot Temperature
  2. Haque M, Islam SMS, Subramaniam S
    3 Biotech, 2017 May;7(1):63.
    PMID: 28452013 DOI: 10.1007/s13205-017-0675-z
    An efficient callus induction and plant regeneration system has been developed using salt and heat as pre-treatment factors for three barley genotypes viz. BB-3, BB-6 and BHL-18. Different concentrations of NaCl (1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 g/L) were used and its effects were determined on the basis of the viability of callus (CV), plant regeneration (PR), relative growth rate (RGR) and tolerance index (TI). The BB-6 showed highest performance on tolerance based on CV (14.72%), PR (7.69%), RGR (0.91%) and TI (0.42%) at 6.5 g/L NaCl. Various NaCl concentrations displayed significantly differences at P 
    Matched MeSH terms: Hot Temperature
  3. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Hot Temperature
  4. Saidi NM, Omar FS, Numan A, Apperley DC, Algaradah MM, Kasi R, et al.
    ACS Appl Mater Interfaces, 2019 Aug 21;11(33):30185-30196.
    PMID: 31347822 DOI: 10.1021/acsami.9b07062
    To overcome the critical limitations of liquid-electrolyte-based dye-sensitized solar cells, quasi-solid-state electrolytes have been explored as a means of addressing long-term device stability, albeit with comparatively low ionic conductivities and device performances. Although metal oxide additives have been shown to augment ionic conductivity, their propensity to aggregate into large crystalline particles upon high-heat annealing hinders their full potential in quasi-solid-state electrolytes. In this work, sonochemical processing has been successfully applied to generate fine Co3O4 nanoparticles that are highly dispersible in a PAN:P(VP-co-VAc) polymer-blended gel electrolyte, even after calcination. An optimized nanocomposite gel polymer electrolyte containing 3 wt % sonicated Co3O4 nanoparticles (PVVA-3) delivers the highest ionic conductivity (4.62 × 10-3 S cm-1) of the series. This property is accompanied by a 51% enhancement in the apparent diffusion coefficient of triiodide versus both unmodified and unsonicated electrolyte samples. The dye-sensitized solar cell based on PVVA-3 displays a power conversion efficiency of 6.46% under AM1.5 G, 100 mW cm-2. By identifying the optimal loading of sonochemically processed nanoparticles, we are able to generate a homogenous extended particle network that effectively mobilizes redox-active species through a highly amorphous host matrix. This effect is manifested in a selective 51% enhancement in photocurrent density (JSC = 16.2 mA cm-2) and a lowered barrier to N719 dye regeneration (RCT = 193 Ω) versus an unmodified solar cell. To the best of our knowledge, this work represents the highest known efficiency to date for dye-sensitized solar cells based on a sonicated Co3O4-modified gel polymer electrolyte. Sonochemical processing, when applied in this manner, has the potential to make meaningful contributions toward the ongoing mission to achieve the widespread exploitation of stable and low-cost dye-sensitized solar cells.
    Matched MeSH terms: Hot Temperature
  5. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Hot Temperature
  6. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Hot Temperature
  7. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Kim KS, Habib F, et al.
    ACS Omega, 2021 May 11;6(18):12261-12273.
    PMID: 34056379 DOI: 10.1021/acsomega.1c01137
    Among several animals, Rattus rattus (rat) lives in polluted environments and feeds on organic waste/small invertebrates, suggesting the presence of inherent mechanisms to thwart infections. In this study, we isolated gut bacteria of rats for their antibacterial activities. Using antibacterial assays, the findings showed that the conditioned media from selected bacteria exhibited bactericidal activities against Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica) and Gram-positive (Bacillus cereus, methicillin-resistant Staphylococcus aureus, and Streptococcus pyogenes) pathogenic bacteria. The conditioned media retained their antibacterial properties upon heat treatment at boiling temperature for 10 min. Using MTT assays, the conditioned media showed minimal cytotoxic effects against human keratinocyte cells. Active conditioned media were subjected to tandem mass spectrometry, and the results showed that conditioned media from Bacillus subtilis produced a large repertoire of surfactin and iturin A (lipopeptides) molecules. To our knowledge, this is the first report of isolation of lipopeptides from bacteria isolated from the rat gut. In short, these findings are important and provide a platform to develop effective antibacterial drugs.
    Matched MeSH terms: Hot Temperature
  8. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Nov 19;4(21):19183-19192.
    PMID: 31763542 DOI: 10.1021/acsomega.9b02474
    An increase of nucleate pool boiling with the use of different fluid properties has received much attention. In particular, the presence of nanostructures in fluids to enhance boiling was given special consideration. This study compares the effects of graphene nanoplatelet (GNP), functionalized GNP with polyethylene glycol (PEG), and multiwalled carbon nanotube (CNT) nanofluids on the pool boiling heat transfer coefficient and the critical heat flux (CHF). Our findings showed that at the same concentration, CHF for functionalized GNP with PEG (GNP-PEG)/deionized water (DW) nanofluids was higher in comparison with GNP- and CNT-based nanofluids. The CHF of the GNP/DW nanofluids was also higher than that of CNT/DW nanofluids. The CHF of GNP-PEG was 72% greater than that of DW at the concentration of 0.1 wt %. There is good agreement between measured critical heat fluxes and the Kandlikar correlation. In addition, the current results proved that the GNP-PEG/DW nanofluids are highly stable over 3 months at a concentration of 0.1 wt %.
    Matched MeSH terms: Hot Temperature
  9. R. Abd-Shukor, W.Y. Lim
    ASM Science Journal, 2013;7(1):18-22.
    MyJurnal
    The electron-phonon coupling constant of the copper oxide-based high temperature superconductors in the van Hove scenario was calculated using three known models and by employing various acoustic data. Three expressions for the transition temperature from the models were used to calculate the constants. All three models assumed a logarithmic singularity in the density of states near the Fermi surface. The calculated electron-phonon coupling constant ranged from 0.06 to 0.28. The constants increased with the transition temperature indicating a strong correlation between electron-phonon coupling and superconductivity in these materials. These values were smaller than the values estimated for the conventional three-dimensional BCS theory. The results were compared with previous reports on direct measurements of electron-phonon coupling constants in the copper oxide based superconductors.
    Matched MeSH terms: Hot Temperature
  10. Kandasamy, R., Azme, Hashim, I., Ismoen, M.
    ASM Science Journal, 2008;2(1):23-33.
    MyJurnal
    The effect of chemical reaction and variable viscosity on mixed convection heat and mass transfer for Hiemenz flow over a porous wedge plate was studied in the presence of heat radiation. The wall of the wedge was embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and had a power-law variation of both the wall temperature and concentration. The fluid was assumed to be viscous and incompressible. Numerical calculations were carried out for different values of dimensionless parameters and an analysis of the results obtained showed that the flow field was influenced appreciably by the buoyancy ratio between species, thermal diffusion and suction/injection at wall surface. The effects of these major parameters on the transport behaviours were investigated methodically and typical results illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions. Comparisons with previously published works were performed and excellent agreement between the results were obtained. It is predicted that this research might prove to be useful for study of the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of underground water, in filtration, and water purification processes.
    Matched MeSH terms: Hot Temperature
  11. Jamuna, K., Noorsal, K., Zakaria, F.A., Hussin, Z.H.
    ASM Science Journal, 2010;4(1):41-47.
    MyJurnal
    Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
    Matched MeSH terms: Hot Temperature
  12. Arifin, N.M., Pop, I., Nazar, R., Ahmad, S.
    ASM Science Journal, 2010;4(2):149-157.
    MyJurnal
    In this paper, the problem of steady laminar boundary layer flow of an incompressible viscous fluid over a moving thin needle is considered. The governing boundary layer equations were first transformed into non-dimensional forms. These non-dimensional equations were then transformed into similarity equations using the similarity variables, which were solved numerically using an implicit finite-difference scheme known as the Keller-box method. The solutions were obtained for a blunt-nosed needle. Numerical computations were carried out for various values of the dimensionless parameters of the problem which included the Prandtl number Pr and the parameter a representing the needle size. It was found that the heat transfer characteristics were significantly
    influenced by these parameters. However, the Prandtl number had no effect on the flow characteristics due to the decoupled boundary layer equations.
    Matched MeSH terms: Hot Temperature
  13. Devendra, C.
    ASM Science Journal, 2011;5(2):139-150.
    MyJurnal
    The effects of anticipated climate change and the potential impact on animal production are discussed in the context of varying biophysical features, agro-ecological zones (AEZs), ecosystems, land use, and responses in animal genetic diversity and production. The AEZs in Asia have great diversity in their links to food production in crop-animal small farm systems, the poverty complex and livelihoods of the poor. In these environments. climate change effects on animals were mediated through heat stress, water availability, quantity and quality of the available feed resources, type of production system and productivity. The responses to heat stress are tabulated and they vary according to species, breeds within-species, AEZs, physiological and nutritional status, genetic potential and multifunctionality. Among ruminant production systems, dairy production was especially vulnerable to heat stress. Interestingly in India, buffalo numbers owned largely by the landless and small farmers in the semi-arid and arid regions have grown twice as fast as the buffalo population in the irrigated areas. The implications and strategies to cope with climate change involve mitigation, adaptation and policy. The principal strategy is targetting to the reduce on in greenhouse gas (GHG) emission from the agricultural sector from enteric fermentation and manure, and ways to intensify C sequestration. An important link is that of breeding and conserving indigenous animal genetic resources as a means to mitigate climate change, with associated benefits to the trade of live animals and animal products. Improved integrated tree crops-ruminant systems are an important pathway to enhance C sequestration. The opportunities for research and development (R&D) are enormous and they would need policy support and large investments to provide improved understanding of ways to ensure sustainable animal production systems. Coping with the totality of the effects and impact of climate change constitutes the challenges for agricultural R&D and the improved livelihood of the resource-poor in the future.
    Matched MeSH terms: Hot Temperature
  14. Arifin, N.M., Mokhtar, N.F.M., Nazar, R., Pop, I.
    ASM Science Journal, 2007;1(1):57-62.
    MyJurnal
    Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
    Matched MeSH terms: Hot Temperature
  15. Menon N, Mariappan V, Vellasamy KM, Samudi C, See JX, Ganesh PS, et al.
    Access Microbiol, 2020;2(5):acmi000110.
    PMID: 32974575 DOI: 10.1099/acmi.0.000110
    Burkholderia pseudomallei is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of replicating within a plethora of eukaryotic cell lines. B. pseudomallei can remain dormant within host cells without symptoms for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell responses by B. pseudomallei . Peripheral blood mononuclear cells (1×106 cells/well) isolated by Ficoll Paque (Sigma-Aldrich) density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) (10 ug ml-1) and heat-killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for surface expression of coinhibitory molecules by flow cytometry. We found that B. pseudomallei induced the upregulation of programmed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells in vitro following exposure to crude CFAs of B. pseudomallei . This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.
    Matched MeSH terms: Hot Temperature
  16. Ali MA, Nouruddeen ZB, Muhamad II, Latip RA, Othman NH
    Acta Sci Pol Technol Aliment, 2013 Jul-Sep;12(3):241-52.
    PMID: 24584953
    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO.
    Matched MeSH terms: Hot Temperature/adverse effects*
  17. Ismail M, Mariod A, Pin SS
    Acta Sci Pol Technol Aliment, 2013 Jan-Mar;12(1):21-31.
    PMID: 24584862
    BACKGROUND:
    The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated.
    METHODS:
    The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC.
    RESULTS:
    The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.
    Matched MeSH terms: Hot Temperature
  18. Ali MA, Islam MA, Othman NH, Noor AM, Ibrahim M
    Acta Sci Pol Technol Aliment, 2020 1 14;18(4):427-438.
    PMID: 31930793 DOI: 10.17306/J.AFS.0694
    BACKGROUND: Rice bran oil (RBO) contains significant amounts of micronutrients (oryzanol, tocotrienol, tocopherol, phytosterols etc.) that impart a high resistance to thermal oxidation of the oil. The high oxidative stability of RBO can make it a preferred oil to improve the oxidative and flavor stabilities of other oils rich in PUFAs. In this study, the changes in the oxidative status and fatty acid composition in soybean oil (SO) blended with RBO under extreme thermal conditions were evaluated.

    METHODS: The blends were prepared in a volume ratio of 10:90, 20:80, 40:60, and 60:40 (RBO:SO). The changes in the oxidative parameters and fatty acid composition of the samples during heating at frying temperature (170°C) were determined using analytical and instrumental methods. Oxidative alteration was also monitored by recording FTIR spectra of oil samples.

    RESULTS: The increase in oxidative parameters (free fatty acid, color, specific extinctions, peroxide value, p-anisidine value, and thiobarbituric acid value) was greater in pure SO as compared to RBO or blend oils during heating. This indicates that the SO samples incorporated with RBO have the least degradation, while pure SO has the highest. Blending resulted in a lower level of polyunsaturated fatty acids (PUFA)  with       a higher level of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). During heating, the relative content of PUFA decreased and that of SFA increased. However, the presence of RBO in SO slowed down the oxidative deterioration of PUFA. In FTIR, the peak intensities in SO were markedly changed in comparison with blend oils during heating. The reduction in the formation of oxidative products in SO during thermal treatment increased as the concentration of the RBO in SO increased; however, the levels of the protective effect of RBO did not increase steadily with an increase in its concentration.

    CONCLUSIONS: During thermal treatment, the generation of hydroperoxides, their degradation and formation of secondary oxidative products as evaluated by oxidative indices, fatty acids and IR absorbances were lower in blend oils compared to pure SO. In conclusion, RBO can significantly retard the process of lipid peroxidation in SO during heating at frying temperature.

    Matched MeSH terms: Hot Temperature*
  19. Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM
    Acta Trop, 2011 Jan;117(1):23-30.
    PMID: 20858455 DOI: 10.1016/j.actatropica.2010.09.004
    During a study on the quality of the indoor environment, Acanthamoeba spp. were detected in 20 out of 87 dust samples collected from air-conditioners installed in a four-story campus building located in Kuala Lumpur, Malaysia. Twenty-one cloned Acanthamoeba isolates designated as IMU1 to IMU21 were established from the positive primary cultures. Five species were identified from the 16 isolates according to the morphological criteria of Pussard and Pons; i.e. A. castellanii, A. culbertsoni, A. griffini, A. hatchetti and A. polyphaga. Species identities for the remaining five isolates (IMU4, IMU5, IMU15, IMU20 and IMU21), however, could not be determined morphologically. At genotypic characterization, these isolates were placed into T3 (IMU14); T5 (IMU16 and IMU17) and T4 (all the remaining isolates). To predict the potential pathogenicity of these Acanthamoeba isolates, thermo- and osmotolerance tests were employed; many isolates were predicted as potential human pathogens based on the outcome of these tests. This is the first time potentially pathogenic Acanthamoeba have been isolated from air-conditioners in Malaysia.
    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links