Displaying publications 1 - 20 of 112 in total

Abstract:
Sort:
  1. Gul T, Islam S, Shah RA, Khalid A, Khan I, Shafie S
    PLoS One, 2015;10(7):e0126698.
    PMID: 26147287 DOI: 10.1371/journal.pone.0126698
    This paper studies the unsteady magnetohydrodynamics (MHD) thin film flow of an incompressible Oldroyd-B fluid over an oscillating inclined belt making a certain angle with the horizontal. The problem is modeled in terms of non-linear partial differential equations with some physical initial and boundary conditions. This problem is solved for the exact analytic solutions using two efficient techniques namely the Optimal Homotopy Asymptotic Method (OHAM) and Homotopy Perturbation Method (HPM). Both of these solutions are presented graphically and compared. This comparison is also shown in tabular form. An excellent agreement is observed. The effects of various physical parameters on velocity have also been studied graphically.
    Matched MeSH terms: Hydrodynamics*
  2. Hussanan A, Zuki Salleh M, Tahar RM, Khan I
    PLoS One, 2014;9(10):e108763.
    PMID: 25302782 DOI: 10.1371/journal.pone.0108763
    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
    Matched MeSH terms: Hydrodynamics*
  3. Khan I, Ali F, Shafie S
    PLoS One, 2013;8(5):e61531.
    PMID: 23667442 DOI: 10.1371/journal.pone.0061531
    The present work is concerned with exact solutions of Stokes second problem for magnetohydrodynamics (MHD) flow of a Burgers' fluid. The fluid over a flat plate is assumed to be electrically conducting in the presence of a uniform magnetic field applied in outward transverse direction to the flow. The equations governing the flow are modeled and then solved using the Laplace transform technique. The expressions of velocity field and tangential stress are developed when the relaxation time satisfies the condition γ =  λ²/4 or γ> λ²/4. The obtained closed form solutions are presented in the form of simple or multiple integrals in terms of Bessel functions and terms with only Bessel functions. The numerical integration is performed and the graphical results are displayed for the involved flow parameters. It is found that the velocity decreases whereas the shear stress increases when the Hartmann number is increased. The solutions corresponding to the Stokes' first problem for hydrodynamic Burgers' fluids are obtained as limiting cases of the present solutions. Similar solutions for Stokes' second problem of hydrodynamic Burgers' fluids and those for Newtonian and Oldroyd-B fluids can also be obtained as limiting cases of these solutions.
    Matched MeSH terms: Hydrodynamics*
  4. Lund LA, Omar Z, Khan I
    Comput Methods Programs Biomed, 2019 Dec;182:105044.
    PMID: 31491654 DOI: 10.1016/j.cmpb.2019.105044
    BACKGROUND AND OBJECTIVE: The last two and half decades are witnessed a great surge in the use convective fluids for enhancement of heat transfer of minerals ethylene glycol, oil and water due to their numerous applications in the industrial segments including chemical production, microelectronics, power generation, transportation, and air-conditioning. For this purpose, different procedures were applied to upgrade the thermal conductivity of common fluid but could not. Further, Choi and Eastman in 1995 introduced nanofluid which has good thermal properties as compared to common fluids. After that, it can be seen that researchers, mathematicians, and scientists tried to understand the principles of nanofluids and how to implicate them in many different practical applications. In this work, the Buongiorno model has been considered for nanofluid. One of the prime objectives is to consider all possible multiple solutions of the model because these solutions cannot be seen experimentally.

    METHODS: The governing equations of fluid flow have been transformed in the form of ordinary differential equations. These equations have been solved by two methods namely, shooting method and three-stage Lobatto IIIa formula.

    RESULTS: The effects of different parameters on temperature, velocity, concentration profiles, skin friction coefficient, Sherwood number, and reduced Nusselt number were obtained and presented graphically. It was noticed that four solutions existed at definite ranges of the parameters for high suction over both surfaces for the first time. The results of the stability analysis revealed that only the first solution is more stable and possess physical reliability compared to the remaining solutions.

    CONCLUSION: The graphs also indicated that the fluid velocity decreases as the thermophoresis parameter increases but the opposite behavior observed for both temperature and concentration profiles in the first solution. Furthermore, it was detected that the concentration profile declined at the higher values of the Brownian motion parameter.

    Matched MeSH terms: Hydrodynamics*
  5. Faizal WM, Ghazali NNN, Khor CY, Badruddin IA, Zainon MZ, Yazid AA, et al.
    Comput Methods Programs Biomed, 2020 Nov;196:105627.
    PMID: 32629222 DOI: 10.1016/j.cmpb.2020.105627
    BACKGROUND AND OBJECTIVE: Human upper airway (HUA) has been widely investigated by many researchers covering various aspects, such as the effects of geometrical parameters on the pressure, velocity and airflow characteristics. Clinically significant obstruction can develop anywhere throughout the upper airway, leading to asphyxia and death; this is where recognition and treatment are essential and lifesaving. The availability of advanced computer, either hardware or software, and rapid development in numerical method have encouraged researchers to simulate the airflow characteristics and properties of HUA by using various patient conditions at different ranges of geometry and operating conditions. Computational fluid dynamics (CFD) has emerged as an efficient alternative tool to understand the airflow of HUA and in preparing patients to undergo surgery. The main objective of this article is to review the literature that deals with the CFD approach and modeling in analyzing HUA.

    METHODS: This review article discusses the experimental and computational methods in the study of HUA. The discussion includes computational fluid dynamics approach and steps involved in the modeling used to investigate the flow characteristics of HUA. From inception to May 2020, databases of PubMed, Embase, Scopus, the Cochrane Library, BioMed Central, and Web of Science have been utilized to conduct a thorough investigation of the literature. There had been no language restrictions in publication and study design of the database searches. A total of 117 articles relevant to the topic under investigation were thoroughly and critically reviewed to give a clear information about the subject. The article summarizes the review in the form of method of studying the HUA, CFD approach in HUA, and the application of CFD for predicting HUA obstacle, including the type of CFD commercial software are used in this research area.

    RESULTS: This review found that the human upper airway was well studied through the application of computational fluid dynamics, which had considerably enhanced the understanding of flow in HUA. In addition, it assisted in making strategic and reasonable decision regarding the adoption of treatment methods in clinical settings. The literature suggests that most studies were related to HUA simulation that considerably focused on the aspects of fluid dynamics. However, there is a literature gap in obtaining information on the effects of fluid-structure interaction (FSI). The application of FSI in HUA is still limited in the literature; as such, this could be a potential area for future researchers. Furthermore, majority of researchers present the findings of their work through the mechanism of airflow, such as that of velocity, pressure, and shear stress. This includes the use of Navier-Stokes equation via CFD to help visualize the actual mechanism of the airflow. The above-mentioned technique expresses the turbulent kinetic energy (TKE) in its result to demonstrate the real mechanism of the airflow. Apart from that, key result such as wall shear stress (WSS) can be revealed via turbulent kinetic energy (TKE) and turbulent energy dissipation (TED), where it can be suggestive of wall injury and collapsibility tissue to the HUA.

    Matched MeSH terms: Hydrodynamics*
  6. Nor Azizah Yacob, Anuar Ishak
    Sains Malaysiana, 2014;43:491-496.
    The steady, two-dimensional laminar flow of a power-law fluid over a permeable shrinking sheet of constant surface temperature is investigated. The governing partial differential equations were transformed into a system of nonlinear ordinary differential equations using a similarity transformation, before being solved numerically by the Runge-Kutta- Fehlberg method with shooting technique. The results are presented graphically and the effects of the power-law index n, suction parameter fw and Prandtl number Pr were discussed. It was found that stronger suction is necessary for the solution to exist for a pseudoplastic fluid (n<1) compared to a dilatant fluid (n>1).
    Matched MeSH terms: Hydrodynamics
  7. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Meor Adnan MA
    ScientificWorldJournal, 2014;2014:619474.
    PMID: 25170524 DOI: 10.1155/2014/619474
    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.
    Matched MeSH terms: Hydrodynamics*
  8. Gul T, Islam S, Shah RA, Khan I, Shafie S
    PLoS One, 2014;9(6):e97552.
    PMID: 24949988 DOI: 10.1371/journal.pone.0097552
    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
    Matched MeSH terms: Hydrodynamics*
  9. Khan A, Khan I, Ali F, Ulhaq S, Shafie S
    PLoS One, 2014;9(3):e90280.
    PMID: 24621775 DOI: 10.1371/journal.pone.0090280
    This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.
    Matched MeSH terms: Hydrodynamics*
  10. Jahangirzadeh A, Basser H, Akib S, Karami H, Naji S, Shamshirband S
    PLoS One, 2014;9(2):e98592.
    PMID: 24919065 DOI: 10.1371/journal.pone.0098592
    The scour phenomenon around bridge piers causes great quantities of damages annually all over the world. Collars are considered as one of the substantial methods for reducing the depth and volume of scour around bridge piers. In this study, the experimental and numerical methods are used to investigate two different shapes of collars, i.e, rectangular and circular, in terms of reducing scour around a single bridge pier. The experiments were conducted in hydraulic laboratory at university of Malaya. The scour around the bridge pier and collars was simulated numerically using a three-dimensional, CFD model namely SSIIM 2.0, to verify the application of the model. The results indicated that although, both types of collars provides a considerable decrease in the depth of the scour, the rectangular collar, decreases scour depth around the pier by 79 percent, and has better performance compared to the circular collar. Furthermore, it was observed that using collars under the stream's bed, resulted in the most reduction in the scour depth around the pier. The results also show the SSIIM 2.0 model could simulate the scour phenomenon around a single bridge pier and collars with sufficient accuracy. Using the experimental and numerical results, two new equations were developed to predict the scour depth around a bridge pier exposed to circular and rectangular collars.
    Matched MeSH terms: Hydrodynamics*
  11. Corda JV, Shenoy BS, Ahmad KA, Lewis L, K P, Khader SMA, et al.
    Comput Methods Programs Biomed, 2022 Feb;214:106538.
    PMID: 34848078 DOI: 10.1016/j.cmpb.2021.106538
    BACKGROUND AND OBJECTIVE: Neonates are preferential nasal breathers up to 3 months of age. The nasal anatomy in neonates and infants is at developing stages whereas the adult nasal cavities are fully grown which implies that the study of airflow dynamics in the neonates and infants are significant. In the present study, the nasal airways of the neonate, infant and adult are anatomically compared and their airflow patterns are investigated.

    METHODS: Computational Fluid Dynamics (CFD) approach is used to simulate the airflow in a neonate, an infant and an adult in sedentary breathing conditions. The healthy CT scans are segmented using MIMICS 21.0 (Materialise, Ann arbor, MI). The patient-specific 3D airway models are analyzed for low Reynolds number flow using ANSYS FLUENT 2020 R2. The applicability of the Grid Convergence Index (GCI) for polyhedral mesh adopted in this work is also verified.

    RESULTS: This study shows that the inferior meatus of neonates accounted for only 15% of the total airflow. This was in contrast to the infants and adults who experienced 49 and 31% of airflow at the inferior meatus region. Superior meatus experienced 25% of total flow which is more than normal for the neonate. The highest velocity of 1.8, 2.6 and 3.7 m/s was observed at the nasal valve region for neonates, infants and adults, respectively. The anterior portion of the nasal cavity experienced maximum wall shear stress with average values of 0.48, 0.25 and 0.58 Pa for the neonates, infants and adults.

    CONCLUSIONS: The neonates have an underdeveloped nasal cavity which significantly affects their airway distribution. The absence of inferior meatus in the neonates has limited the flow through the inferior regions and resulted in uneven flow distribution.

    Matched MeSH terms: Hydrodynamics*
  12. Gul T, Islam S, Shah RA, Khan I, Khalid A, Shafie S
    PLoS One, 2014;9(11):e103843.
    PMID: 25383797 DOI: 10.1371/journal.pone.0103843
    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.
    Matched MeSH terms: Hydrodynamics*
  13. Mansur S, Ishak A, Pop I
    PLoS One, 2015;10(3):e0117733.
    PMID: 25760733 DOI: 10.1371/journal.pone.0117733
    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.
    Matched MeSH terms: Hydrodynamics*
  14. Samiulhaq, Ahmad S, Vieru D, Khan I, Shafie S
    PLoS One, 2014;9(5):e88766.
    PMID: 24785147 DOI: 10.1371/journal.pone.0088766
    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.
    Matched MeSH terms: Hydrodynamics*
  15. Mabood F, Khan WA, Ismail AI
    PLoS One, 2013;8(12):e83581.
    PMID: 24376722 DOI: 10.1371/journal.pone.0083581
    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
    Matched MeSH terms: Hydrodynamics*
  16. Naz MY, Sulaiman SA, Ariwahjoedi B, Ku Shaari KZ
    ScientificWorldJournal, 2013;2013:796081.
    PMID: 24307881 DOI: 10.1155/2013/796081
    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.
    Matched MeSH terms: Hydrodynamics*
  17. Bachok N, Ishak A, Pop I
    PLoS One, 2013;8(4):e60766.
    PMID: 23577156 DOI: 10.1371/journal.pone.0060766
    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
    Matched MeSH terms: Hydrodynamics*
  18. Faizal WM, Ghazali NNN, Badruddin IA, Zainon MZ, Yazid AA, Ali MAB, et al.
    Comput Methods Programs Biomed, 2019 Oct;180:105036.
    PMID: 31430594 DOI: 10.1016/j.cmpb.2019.105036
    Obstructive sleep apnea is one of the most common breathing disorders. Undiagnosed sleep apnea is a hidden health crisis to the patient and it could raise the risk of heart diseases, high blood pressure, depression and diabetes. The throat muscle (i.e., tongue and soft palate) relax narrows the airway and causes the blockage of the airway in breathing. To understand this phenomenon computational fluid dynamics method has emerged as a handy tool to conduct the modeling and analysis of airflow characteristics. The comprehensive fluid-structure interaction method provides the realistic visualization of the airflow and interaction with the throat muscle. Thus, this paper reviews the scientific work related to the fluid-structure interaction (FSI) for the evaluation of obstructive sleep apnea, using computational techniques. In total 102 articles were analyzed, each article was evaluated based on the elements related with fluid-structure interaction of sleep apnea via computational techniques. In this review, the significance of FSI for the evaluation of obstructive sleep apnea has been critically examined. Then the flow properties, boundary conditions and validation of the model are given due consideration to present a broad perspective of CFD being applied to study sleep apnea. Finally, the challenges of FSI simulation methods are also highlighted in this article.
    Matched MeSH terms: Hydrodynamics*
  19. Mirza IA, Abdulhameed M, Vieru D, Shafie S
    Comput Methods Programs Biomed, 2016 Dec;137:149-166.
    PMID: 28110721 DOI: 10.1016/j.cmpb.2016.09.014
    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.
    Matched MeSH terms: Hydrodynamics*
  20. Tiang KL, Ooi EH
    Med Eng Phys, 2016 Aug;38(8):776-84.
    PMID: 27340100 DOI: 10.1016/j.medengphy.2016.05.011
    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis.
    Matched MeSH terms: Hydrodynamics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links