Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Zhong X, Li Y, Zhang J, Han FS
    Org. Lett., 2015 Feb 6;17(3):720-3.
    PMID: 25602274 DOI: 10.1021/ol503734x
    The synthesis of a pentacyclic indole compound corresponding to the core structure of the misassigned indole alkaloid, tronoharine (1), is presented. The key reactions were a formal [3 + 3] cycloaddition of an indol-2-yl carbinol with an azadiene for the construction of the 6/5/6/6 tetracyclic system containing an all-carbon quaternary center and an intramolecular substitution reaction of an amine and a triflate for the creation of the bridged azepine ring. In addition, some other interesting transformations discovered during the synthetic studies are also discussed.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  2. Yap WS, Gan CY, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 Jan 22;79(1):230-9.
    PMID: 26717050 DOI: 10.1021/acs.jnatprod.5b00992
    Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  3. Yap WS, Gan CY, Low YY, Choo YM, Etoh T, Hayashi M, et al.
    J Nat Prod, 2011 May 27;74(5):1309-12.
    PMID: 21428274 DOI: 10.1021/np200008g
    Three new indole alkaloids (1-3), named grandilodines A-C, and five known ones were obtained from the Malayan Kopsia grandifolia. The structures were established using NMR and MS analyses and, in the case of 1 and 2, were confirmed by X-ray diffraction analyses. Alkaloids 1, 3, and lapidilectine B (8) were found to reverse multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  4. Wong SP, Gan CY, Lim KH, Ting KN, Low YY, Kam TS
    Org. Lett., 2015 Jul 17;17(14):3628-31.
    PMID: 26183592 DOI: 10.1021/acs.orglett.5b01757
    A new monoterpene indole alkaloid characterized by an unprecedented pentacyclic cage skeleton, arboridinine (1), was isolated from a Malaysian Kopsia species. The structure and absolute configuration of the alkaloid were determined based on NMR, MS, and X-ray diffraction analysis. A possible biogenetic pathway from a pericine precursor is presented.
    Matched MeSH terms: Indole Alkaloids/chemistry
  5. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  6. Wong CP, Seki A, Horiguchi K, Shoji T, Arai T, Nugroho AE, et al.
    J Nat Prod, 2015 Jul 24;78(7):1656-62.
    PMID: 26176165 DOI: 10.1021/acs.jnatprod.5b00258
    We have previously reported that bisleuconothine A (Bis-A), a novel bisindole alkaloid isolated from Leuconotis griffithii, showed cytostatic activity in several cell lines. In this report, the mechanism of Bis-A-induced cytostatic activity was investigated in detail using A549 cells. Bis-A did not cause apoptosis, as indicated by analysis of annexin V and propidium iodide staining. Expression of all tested apoptosis-related proteins was also unaffected by Bis-A treatment. Bis-A was found to increase LC3 lipidation in MCF7 cells as well as A549 cells, suggesting that Bis-A cytostatic activity may be due to induction of autophagy. Subsequent investigation via Western blotting and immunofluorescence staining indicated that Bis-A induced formation but prevented degradation of autophagosomes. Mechanistic studies showed that Bis-A down-regulated phosphorylation of protein kinase B (AKT) and its downstream kinase, PRAS40, which is an mTOR repressor. Moreover, phosphorylation of p70S6K, an mTOR-dependent kinase, was also down-regulated. Down-regulation of these kinases suggests that the increase in LC3 lipidation may be due to mTOR deactivation. Thus, the cytostatic activity shown by Bis-A may be attributed to its induction of autophagosome formation. The Bis-A-induced autophagosome formation was suggested to be caused by its interference with the AKT-mTOR signaling pathway.
    Matched MeSH terms: Indole Alkaloids/chemistry
  7. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  8. Tang Y, Nugroho AE, Hirasawa Y, Tougan T, Horii T, Hadi AHA, et al.
    J Nat Med, 2019 Jun;73(3):533-540.
    PMID: 30911994 DOI: 10.1007/s11418-019-01297-5
    Two new bisindole alkaloids, leucophyllinines A (1) and B (2) consisting of eburnane and quebrachamine-type skeletons were isolated from the bark of Leuconotis eugeniifolia, and their structures were elucidated on the basis of spectroscopic data. Leucophyllinines A and B showed antiplasmodial activities against Plasmodium falciparum 3D7.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  9. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
    Matched MeSH terms: Indole Alkaloids/chemistry
  10. Tan YS, Ng MP, Tan CH, Tang WK, Sim KS, Yong KT, et al.
    J Nat Prod, 2024 Feb 23;87(2):286-296.
    PMID: 38284153 DOI: 10.1021/acs.jnatprod.3c00960
    Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 μM, respectively.
    Matched MeSH terms: Indole Alkaloids/chemistry
  11. Tan SJ, Lim JL, Low YY, Sim KS, Lim SH, Kam TS
    J Nat Prod, 2014 Sep 26;77(9):2068-80.
    PMID: 25211145 DOI: 10.1021/np500439u
    A total of 20 new indole alkaloids comprising mainly oxidized derivatives of macroline- (including alstofonidine, a macroline indole incorporating a butyrolactone ring-F), pleiocarpamine-, and sarpagine-type alkaloids were isolated from the bark and leaf extracts of Alstonia angustifolia. The structures and relative configurations of these alkaloids were determined using NMR and MS analyses and in some instances confirmed by X-ray diffraction analyses. Alkaloids 3, 7, 35, and 41 showed moderate to weak activity, while 21 showed strong activity in reversing multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  12. Tan SJ, Lim KH, Subramaniam G, Kam TS
    Phytochemistry, 2013 Jan;85:194-202.
    PMID: 22995929 DOI: 10.1016/j.phytochem.2012.08.016
    Nine bisindole alkaloids, comprising four belonging to the macroline-sarpagine group, and five belonging to the macroline-pleiocarpamine group, were isolated from the stem-bark extracts of Alstonia angustifolia (Apocynacea). Their structures were established using NMR and MS analyses.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  13. Tan SJ, Low YY, Choo YM, Abdullah Z, Etoh T, Hayashi M, et al.
    J Nat Prod, 2010 Nov 29;73(11):1891-7.
    PMID: 21043460 DOI: 10.1021/np100552b
    A total of 25 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia spatulata, of which five are new alkaloids of the strychnan type (alstolucines A-E, 1-5) and the other, a new alkaloid of the secoangustilobine A type (alstolobine A, 6). The structures of these alkaloids were established using NMR and MS analysis and, in the case of alstolucine B (2), also confirmed by X-ray diffraction analysis. A reinvestigation of the stereochemical assignment of scholaricine (13) by NMR and X-ray analyses indicated that the configuration at C-20 required revision. Alkaloids 1, 2, 6, 7, 9, 10, and 13 reversed multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  14. Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, et al.
    Planta Med, 2022 Nov;88(14):1325-1340.
    PMID: 35100653 DOI: 10.1055/a-1755-5605
    Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
    Matched MeSH terms: Indole Alkaloids/chemistry
  15. Takayama H
    Chem Pharm Bull (Tokyo), 2004 Aug;52(8):916-28.
    PMID: 15304982
    The leaves of a tropical plant, Mitragyna speciosa KORTH (Rubiaceae), have been traditionally used as a substitute for opium. Phytochemical studies of the constituents of the plant growing in Thailand and Malaysia have led to the isolation of several 9-methoxy-Corynanthe-type monoterpenoid indole alkaloids, including new natural products. The structures of the new compounds were elucidated by spectroscopic and/or synthetic methods. The potent opioid agonistic activities of mitragynine, the major constituent of this plant, and its analogues were found in in vitro and in vivo experiments and the mechanisms underlying the analgesic activity were clarified. The essential structural features of mitragynines, which differ from those of morphine and are responsible for the analgesic activity, were elucidated by pharmacological evaluation of the natural and synthetic derivatives. Among the mitragynine derivatives, 7-hydroxymitragynine, a minor constituent of M. speciosa, was found to exhibit potent antinociceptive activity in mice.
    Matched MeSH terms: Indole Alkaloids/chemistry*
  16. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2008 Jan;71(1):53-7.
    PMID: 18078327
    Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
    Matched MeSH terms: Indole Alkaloids/chemistry
  17. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Indole Alkaloids/chemistry
  18. Sim DS, Chong KW, Nge CE, Low YY, Sim KS, Kam TS
    J Nat Prod, 2014 Nov 26;77(11):2504-12.
    PMID: 25333996 DOI: 10.1021/np500589u
    Seven new indole alkaloids (1-7) comprising four vobasine, two tacaman, and one corynanthe-tryptamine bisindole alkaloid were isolated from the stem-bark extract of a Malayan Tabernaemontana. Two of the new vobasine alkaloids (1, 3), as well as 16-epivobasine (15) and 16-epivobasenal (17), showed appreciable cytotoxicity toward KB cells (IC50 ca. 5 μg/mL). The structure of the known Tabernaemontana alkaloid tronoharine (8) was revised based on newly acquired NMR data, as well as X-ray diffraction analysis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  19. Sim DS, Navanesan S, Sim KS, Gurusamy S, Lim SH, Low YY, et al.
    J Nat Prod, 2019 04 26;82(4):850-858.
    PMID: 30869890 DOI: 10.1021/acs.jnatprod.8b00919
    Examination of the EtOH extract of the leaves of the Malayan Tabernaemontana corymbosa resulted in the isolation of four new (1-4) and two known bisindole alkaloids (5, 6) of the Aspidosperma- Aspidosperma type. The structures of these alkaloids were determined based on analysis of the spectroscopic data (NMR and HRESIMS). X-ray diffraction analyses of the related bisindole alkaloids conophylline (5) and conophyllinine (6) established the absolute configurations. Treatment of the bisindole alkaloid conophylline (5) with benzeneselenic anhydride gave, in addition to the known bisindole polyervinine (7) previously isolated from another Malayan Tabernaemontana, another bisindole product, 8, an isolable tautomer of 7. X-ray diffraction analyses yielded the absolute configurations of both bisindoles and in addition showed that polyervinine (7) exists primarily as the neutral dione structure. The bisindoles (1-8) and the related conophylline-type bisindoles (9-13) showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, A549, HT-29, and HCT 116 cells, with IC50 values for the active compounds in the 0.01-5 μM range.
    Matched MeSH terms: Indole Alkaloids/chemistry
  20. Qureshi AK, Mukhtar MR, Hirasawa Y, Hosoya T, Nugroho AE, Morita H, et al.
    Chem Pharm Bull (Tokyo), 2011;59(2):291-3.
    PMID: 21297315
    Two new indole alkaloids, neolamarckines A and B (1, 2) were isolated from the leaves of Neolamarckia cadamba (Rubiaceae). Structural elucidation of 1 and 2 was performed by combination of 2D-NMR and circular dichroism (CD) spectra, and chemical correlations. Neolamarckine A (1) showed inhibition of inducible nitric oxide synthase (iNOS) dose dependently.
    Matched MeSH terms: Indole Alkaloids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links