Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    J Med Entomol, 2022 01 12;59(1):301-307.
    PMID: 34459477 DOI: 10.1093/jme/tjab146
    The efficacy of three groups of insect growth regulators, namely juvenile hormone mimics (methoprene and pyriproxyfen), chitin synthesis inhibitors (diflubenzuron and novaluron), and molting disruptor (cyromazine) was evaluated for the first time, against Aedes albopictus Skuse (Diptera: Culicidae) larvae from 14 districts in Sabah, Malaysia. The results showed that all field populations of Ae. albopictus were susceptible towards methoprene, pyriproxyfen, diflubenzuron, novaluron, and cyromazine, with resistance ratio values ranging from 0.50-0.90, 0.60-1.00, 0.67-1.17, 0.71-1.29, and 0.74-1.07, respectively. Overall, the efficacy assessment of insect growth regulators in this study showed promising outcomes and they could be further explored as an alternative to conventional insecticides.
    Matched MeSH terms: Larva/drug effects
  2. Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, et al.
    Parasit Vectors, 2021 Jun 10;14(1):315.
    PMID: 34112220 DOI: 10.1186/s13071-021-04785-4
    Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries.
    Matched MeSH terms: Larva/drug effects*
  3. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Larva/drug effects
  4. Rasli R, Cheong YL, Che Ibrahim MK, Farahininajua Fikri SF, Norzali RN, Nazarudin NA, et al.
    PLoS Negl Trop Dis, 2021 Mar;15(3):e0009205.
    PMID: 33755661 DOI: 10.1371/journal.pntd.0009205
    BACKGROUND: In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance.

    METHOD AND RESULTS: The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species.

    CONCLUSION: The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.

    Matched MeSH terms: Larva/drug effects
  5. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

    Matched MeSH terms: Larva/drug effects
  6. Ali S, Li Y, Haq IU, Abbas W, Shabbir MZ, Khan MM, et al.
    PLoS One, 2021;16(12):e0260470.
    PMID: 34852006 DOI: 10.1371/journal.pone.0260470
    Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.
    Matched MeSH terms: Larva/drug effects*
  7. Han HS, Yasmin L
    Vet Dermatol, 2020 Aug;31(4):335-e87.
    PMID: 32323413 DOI: 10.1111/vde.12855
    The most common fly species associated with screwworm myiasis in Southeast Asia is Chrysomya bezziana (Ch. bezziana), the Old-World screwworm. Treatment of screwworm myiasis in cats traditionally has comprised subcutaneous injection of ivermectin or oral administration of nitenpyram, combined with aggressive tissue debridement and larval removal under general anaesthesia. Two cats diagnosed with cutaneous myiasis caused by the larvae of Ch. bezziana were treated with lotilaner. In both cats, a single dose of lotilaner at 6-26 mg/kg, killed all larvae within 24 h, negating the need for general anaesthesia. Both cats were simultaneously infested with Lynxacarus radovskyi (L. radovskyi) which also was eradicated with lotilaner. No adverse reactions were observed and both cats recovered without complications.
    Matched MeSH terms: Larva/drug effects
  8. Owen-Smith P, Perry R, Wise J, Jamil RZR, Gut L, Sundin G, et al.
    Pest Manag Sci, 2019 Nov;75(11):3050-3059.
    PMID: 30895726 DOI: 10.1002/ps.5421
    BACKGROUND: Air blast sprayers are not optimized for spraying the short statured trees in modern apple orchards, resulting in off target drift and variable coverage. A solid set canopy delivery system (SSCDS) consisting of a microsprayer array distributed throughout the orchard was investigated as a replacement agrochemical application method in this study. SSCDS's have the potential to optimize coverage, rapidly spray applications, and remove the operator and tractor from the orchard.

    RESULTS: Air blast and SSCDS applications were compared using water sensitive paper, bioassays, and pest damage assessments. Pest management and coverage were compared using application volumes of 700 and 795 L ha-1 , respectively. In 2013, adaxial coverage measurements showed no difference between the treatments, but air blast sprayers had higher coverage levels on the abaxial surfaces. There were no significant differences in coverage in 2014. Bioassays using Choristoneura rosaceana fed on leaf discs treated by the SSCDS displayed 95.8% mortality in 2013 and 94.2% mortality in 2014, and air blast treated larval mortality was 95% in 2013 and 100% in 2014. Damage evaluations in both years generally showed no significant differences between the air blast plots and the SSCDS plots, but significant differences between the treated plots and untreated control.

    CONCLUSIONS: The prototype SSCDS was an effective pest management tool in high density apples, and offered a number of advantages over an air blast. Further engineering and research into coverage optimization would offer producers a novel tool for foliar agrochemical applications. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Larva/drug effects
  9. Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, et al.
    Nat Commun, 2019 06 28;10(1):2869.
    PMID: 31253776 DOI: 10.1038/s41467-019-10732-w
    Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control.
    Matched MeSH terms: Larva/drug effects
  10. Shamsudin KJ, Phan CS, Kulip J, Hatai K, Vairappan CS, Kamada T
    J Asian Nat Prod Res, 2019 May;21(5):435-441.
    PMID: 29502443 DOI: 10.1080/10286020.2018.1440391
    The medicinal plant, Syzygium leucoxylon or commonly known as Obah found in North Borneo was considered as traditional medicine by local committee. Two new phenolics, leucoxenols A (1) and B (2) were isolated and identified as major secondary metabolites from the leaves of S. leucoxylon. Their chemical structures were elucidated based on spectroscopic data such as NMR and HRESIMS. Furthermore, these compounds were active against selected strains of fungi.
    Matched MeSH terms: Larva/drug effects
  11. Leong CS, Vythilingam I, Wong ML, Wan Sulaiman WY, Lau YL
    Acta Trop, 2018 Sep;185:115-126.
    PMID: 29758171 DOI: 10.1016/j.actatropica.2018.05.008
    The resistance status of Selangor Aedes aegypti (Linnaeus) larvae against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Aedes aegypti were susceptible against temephos (organophosphate), although resistance (RR50 = 0.21-2.64) may be developing. The insecticides susceptibility status of Ae. aegypti larvae were found heterogeneous among the different study sites. Results showed that Ae. aegypti larvae from Klang, Sabak Bernam and Sepang were susceptible against all insecticides tested. However, other study sites exhibited low to high resistance against all pyrethroids (RR50 = 1.19-32.16). Overall, the application of synergists ethacrynic acid, S.S.S.- tributylphosphorotrithioate and piperonyl butoxide increased the toxicity of insecticides investigated. However, the application failed to increase the mortality to susceptible level (>97%) for certain populations, therefore there are chances of alteration of target site resistance involved. Biochemical assays revealed that α-esterase, (Gombak, Kuala Langat, Kuala Selangor and Sabak Bernam strains) β-esterase (Klang and Sabak Bernam strains), acetylcholinesterase (Kuala Selangor and Sabak Bernam strains), glutathione-S-transferase (Kuala Selangor and Sabak Bernam strains) and mono-oxygenases (Gombak, Hulu Langat, Hulu Selangor and Kuala Langat strains) were elevated. Spearman rank-order correlation indicated a significant correlation between resistance ratios of: DDT and deltamethrin (r = 0.683, P = 0.042), cyfluthrin and deltamethrin (r = 0.867, P =0.002), cyflyuthrin and lambdacyhalothrin (r = 0.800, P =0.010), cyfluthrin and permethrin (r = 0.770, P =0.015) deltamethrin and permethrin (r = 0.803, P =0.088), propoxur and malathion (r = 0.867, P = 0.002), malathion and temephos (r = 0.800, P = 0.010), etofenprox and MFO enzyme (r = 0.667, P =0.050). The current study provides baseline information for vector control programs conducted by local authorities. The susceptibility status of Ae. aegypti should be monitored sporadically to ensure the effectiveness of current vector control strategy in Selangor.
    Matched MeSH terms: Larva/drug effects*
  12. Lau KW, Chen CD, Lee HL, Low VL, Sofian-Azirun M
    J Econ Entomol, 2018 05 28;111(3):1388-1394.
    PMID: 29617840 DOI: 10.1093/jee/toy071
    The susceptibility status of Aedes albopictus (Skuse; Diptera: Culicidea) larvae collected from 13 districts in Sarawak state, Malaysia was evaluated against five insect growth regulators (IGRs) namely, methoprene, pyriproxyfen, diflubenzuron, cyromazine, and novaluron. Field populations of Ae. albopictus were susceptible to methoprene, pyriproxyfen, cyromazine and novaluron with resistance ratios (RRs) ranging from 0.19-0.38, 0.05-0.14, 0.50-0.95, and 0.75-1.00, respectively. Nevertheless, tolerance towards diflubenzuron (0.33-1.33) was observed in this study. In general, these IGRs exhibited promising results and can be used as alternative control agents against field populations of Ae. albopictus in Sarawak, Malaysia.
    Matched MeSH terms: Larva/drug effects
  13. Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, et al.
    PLoS One, 2018;13(11):e0206982.
    PMID: 30399167 DOI: 10.1371/journal.pone.0206982
    BACKGROUND: The resistance problem of dengue vectors to different classes of insecticides that are used for public health has raised concerns about vector control programmes. Hence, the discovery of alternative compounds that would enhance existing tools is important for overcoming the resistance problem of using insecticides in vectors and ensuring a chemical-free environment. The larvicidal effects of Azolla pinnata extracts by using two different extraction methods with methanol solvent against Aedes in early 4th instar larvae was conducted.

    METHODS: The fresh Azolla pinnata plant from Kuala Krai, Kelantan, Malaysia was used for crude extraction using Soxhlet and maceration methods. Then, the chemical composition of extracts and its structure were identified using GCMS-QP2010 Ultra (Shimadzu). Next, following the WHO procedures for larval bioassays, the extracts were used to evaluate the early 4th instar larvae of Aedes mosquito vectors.

    RESULTS: The larvicidal activity of Azolla pinnata plant extracts evidently affected the early 4th instar larvae of Aedes aegypti mosquito vectors. The Soxhlet extraction method had the highest larvicidal effect against Ae. aegypti early 4th instar larvae, with LC50 and LC95 values of 1093 and 1343 mg/L, respectively. Meanwhile, the maceration extraction compounds were recorded with the LC50 and LC95 values of 1280 and 1520 mg/L, respectively. The larvae bioassay test for Ae. albopictus showed closely similar values in its Soxhlet extraction, with LC50 and LC95 values of 1035 and 1524 mg/L, compared with the maceration extraction LC50 and LC95 values of 1037 and 1579 mg/L, respectively. The non-target organism test on guppy fish, Poecilia reticulata, showed no mortalities and posed no toxic effects. The chemical composition of the Azolla pinnata plant extract has been found and characterized as having 18 active compounds for the Soxhlet method and 15 active compounds for the maceration method.

    CONCLUSIONS: Our findings showed that the crude extract of A. pinnata bioactive molecules are effective and have the potential to be developed as biolarvicides for Aedes mosquito vector control. This study recommends future research on the use of active ingredients isolated from A. pinnata extracts and their evaluation against larvicidal activity of Aedes in small-scale field trials for environmentally safe botanical insecticide invention.

    Matched MeSH terms: Larva/drug effects*
  14. Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, Matsuura H, et al.
    Mar Drugs, 2017 Aug 28;15(9).
    PMID: 28846653 DOI: 10.3390/md15090267
    Six new compounds, omaezol, intricatriol, hachijojimallenes A and B, debromoaplysinal, and 11,12-dihydro-3-hydroxyretinol have been isolated from four collections of Laurencia sp. These structures were determined by MS and NMR analyses. Their antifouling activities were evaluated together with eight previously known compounds isolated from the same samples. In particular, omaezol and hachijojimallene A showed potent activities (EC50 = 0.15-0.23 µg/mL) against larvae of the barnacle Amphibalanus amphitrite.
    Matched MeSH terms: Larva/drug effects*
  15. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
    Matched MeSH terms: Larva/drug effects
  16. Karami A, Groman DB, Wilson SP, Ismail P, Neela VK
    Environ Pollut, 2017 Apr;223:466-475.
    PMID: 28129952 DOI: 10.1016/j.envpol.2017.01.047
    There are serious concerns over the adverse impacts of microplastics (MPs) on living organisms. The main objective of this study was to test the effects of MPs on the total length, weight, condition factor (CF), transcriptional level of antioxidant, anti and pro-apoptotic, and neurotransmitter genes, and the histopathology of the gill, liver, brain, kidney, and intestine in the larvae of zebrafish (Danio rerio). Fish were exposed to one of three levels of pristine low-density polyethylene (LDPE) fragments (5, 50, or 500 μg/L) for 10 or 20 days. No significant changes were observed in any of the selected biomarkers across MP concentrations at days 10 or 20. The expression of casp9 (caspase 9, apoptosis-related cysteine protease), casp3a (caspase 3, apoptosis-related cysteine protease a) and cat (catalase), however, were significantly lower in the larvae sampled at day 20 than day 10. We provide evidence that virgin short-term exposure to LDPE fragments has minimal impact on biomarker responses in D. rerio larvae.
    Matched MeSH terms: Larva/drug effects*
  17. Abu Hasan Z', Williams H, Ismail NM, Othman H, Cozier GE, Acharya KR, et al.
    Sci Rep, 2017 03 27;7:45409.
    PMID: 28345667 DOI: 10.1038/srep45409
    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.
    Matched MeSH terms: Larva/drug effects*
  18. Ali ZA, Roslan MA, Yahya R, Wan Sulaiman WY, Puteh R
    IET Nanobiotechnol, 2017 Mar;11(2):152-156.
    PMID: 28476997 DOI: 10.1049/iet-nbt.2015.0123
    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50 = 15.76 ppm and LC90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
    Matched MeSH terms: Larva/drug effects*
  19. Abu Bakar N, Mohd Sata NS, Ramlan NF, Wan Ibrahim WN, Zulkifli SZ, Che Abdullah CA, et al.
    Neurotoxicol Teratol, 2017 Jan-Feb;59:53-61.
    PMID: 27919701 DOI: 10.1016/j.ntt.2016.11.008
    Chronic exposure to mercury (Hg) can lead to cumulative impairments in motor and cognitive functions including alteration in anxiety responses. Although several risk factors have been identified in recent year, little is known about the environmental factors that either due exposure toward low level of inorganic mercury that may led to the developmental disorders. The present study investigated the effects of embryonic exposure of mercury chloride on motor function and anxiety-like behavior. The embryo exposed to 6 different concentrations of HgCl2 (7.5, 15, 30, 100, 125, 250nM) at 5hpf until hatching (72hpf) in a semi-static condition. The mortality rate increased in a dose dependent manner where the chronic embryonic exposure to 100nM decreased the number of tail coiling, heartbeat, and swimming activity. Aversive stimulus was used to examine the effects of 100nM interferes with the development of anxiety-related behavior. No elevation in both thigmotaxis and avoidance response of 6dpf larvae exposed with 100nM were found. Biochemical analysis showed HgCl2 exposure affects proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. These results showed that implication of HgCl2 on locomotor and biochemical defects affects motor performance and anxiety-like responses. Yet, the potential underlying mechanisms these responses need to be further investigated which is crucial to prevent potential hazards on the developing organism due to neurotoxicant exposure.
    Matched MeSH terms: Larva/drug effects*
  20. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Sep;30(18):2077-84.
    PMID: 26679526 DOI: 10.1080/14786419.2015.1114935
    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.
    Matched MeSH terms: Larva/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links