Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Zuridah H, Bahaman AR, Mohd Azmi ML, Mutalib AR
    Med J Malaysia, 2004 Jun;59(2):153-9.
    PMID: 15559163 MyJurnal
    A total of 157 stool samples were examined for Group A rotaviruses in diarrheic children admitted to 8 different major hospitals in Malaysia. The overall incidence rate in this study was 19.7% (31 of 157) with a variation of 9.5% to 39.1% in different locations. Majority of the infections detected were in those under 2 years of age and there were fewer admissions in the older age group. The stool samples were initially screened for rotavirus Group A by latex agglutination method and followed by RNA electrophoresis. The size and the characteristics wheel-shaped morphology of the viral preparations when examined by electron-microscopy further confirmed the presence of rotaviruses in the positive stool samples. Analysis of the RNA pattern showed that majority of the isolates, 51.6% (16 of 31) were Type IIC ('long' with comigration of RNA segments 7 and 8), 35.5% (11 of 31) with Type IIG ('long' with comigration of segments 7, 8, 9), 9.7% (3 of 31) with Type IG ('short' with comigration of RNA segments 7, 8, 9) and 3.2% (1 of 31) of mixed or atypical pattern. It appeared that over a 12 year interval, only one new or unusual rotavirus electropherotype was found. This is the first comprehensive report on the electropherotypes of rotaviruses covering eight different geographical locations in Malaysia and the data obtained is useful for understanding the geographic distribution and types of rotaviruses transmitting in Malaysia.
    Matched MeSH terms: Latex Fixation Tests
  2. Yong SF, Goh FN, Ngeow YF
    J Water Health, 2010 Mar;8(1):92-100.
    PMID: 20009251 DOI: 10.2166/wh.2009.002
    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.
    Matched MeSH terms: Latex Fixation Tests
  3. Yip E, Cacioli P
    J Allergy Clin Immunol, 2002 Aug;110(2 Suppl):S3-14.
    PMID: 12170237 DOI: 10.1067/mai.2002.124499
    Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content.
    Matched MeSH terms: Latex/immunology; Latex/isolation & purification
  4. Yeang HY, Arif SA, Raulf-Heimsoth M, Loke YH, Sander I, Sulong SH, et al.
    J Allergy Clin Immunol, 2004 Sep;114(3):593-8.
    PMID: 15356563 DOI: 10.1016/j.jaci.2004.05.039
    BACKGROUND:
    Sensitization to natural rubber latex has been linked to proteins from medical latex gloves. Various assays to estimate the amount of residual allergenic proteins extractable from latex gloves to assess their potential exposure hazard have inherent weaknesses.

    OBJECTIVE:
    This investigation was aimed at developing 2-site immunoenzymetric assays and identifying appropriate protein markers to assess the allergenic potential of latex gloves.

    METHODS:
    The presence of 6 latex allergens--Hev b 1, 2, 3, 5, 6, and 13--was measured in a cross-section of commercial latex medical gloves by using monoclonal and polyclonal antibody-based 2-site immunoenzymetric assays. The overall allergenic potential of these gloves was assessed by IgE-inhibition assay. Stepwise multiple regression analyses were performed to identify marker allergens that best explained the variation in latex glove allergenicity.

    RESULTS:
    All 6 latex allergens were detected in at least some of the glove samples. Hev b 5 and Hev b 13 were identified as the marker allergens that combined best to explain the variation in the glove allergenicity. The significant multiple correlation (R=0.855) between these 2 markers and glove allergenic potency forms the basis of an assay to gauge latex glove allergenicity.

    CONCLUSION:
    The overall allergenic potential of latex gloves can be estimated by using Hev b 5 and Hev b 13 as indicator allergens. The correlation between glove allergenicity and the level of these allergens was maintained for low-protein gloves (<200 microg/g). This estimation of glove allergenicity was superior to that obtained by using total protein readings.
    Matched MeSH terms: Latex/adverse effects; Latex/chemistry; Latex Hypersensitivity/prevention & control
  5. Yeang HY, Chow KS, Yusof F, Arif SA, Chew NP, Loke YH
    J Investig Allergol Clin Immunol, 2000 Jul-Aug;10(4):215-22.
    PMID: 11039838
    Six Hevea brasiliensis latex protein allergens, Hevb 1, Hev b 2, Hev b 3, Hev b 4, and two variants of Hev b 7 (7b and 7c), were purified from Hevea latex, while a seventh protein, Hev b 5, was prepared in recombinant form. The presence of these proteins in glove extracts was indicated by their respective antibodies in the serum of rabbits immunized against the extracts. The relative propensities of IgE binding to the individual latex allergens were compared using sera from latex-allergic patients. IgE recognition of Hev b 4, Hev b 7b, Hev b 5 and Hev b 2 was most frequently encountered, with 75, 61, 31 and 28%, respectively, of the patient sera reacting. Sensitivity to multiple latex proteins was common, and out of the 31 seropositive patients, 23 (74%/ ) had IgE against at least two latex allergens, while 12 (39%) had IgE specific for at least three allergens. Statistical analysis of the data suggested that many patients might have acquired sensitivity to Hev b 2, Hev b 4 and Hev b 7b from a common source. (e.g., from latex products). On the other hand, sensitivity to Hev b 5 and to Hev b 7c were interrelated. It is plausible that sensitivity to these two proteins might have been acquired from sources other than latex products (e.g., from certain foods).
    Matched MeSH terms: Latex/adverse effects*; Latex/immunology; Latex/chemistry; Latex Hypersensitivity/diagnosis*; Latex Hypersensitivity/etiology*
  6. Yeang HY
    Ann. Allergy Asthma Immunol., 2000 Jun;84(6):628-32.
    PMID: 10875493 DOI: 10.1016/S1081-1206(10)62415-5
    BACKGROUND:
    The prevalence of latex-specific IgE computed from the results of serologic assays is commonly thought to reflect, to a greater or lesser extent, the prevalence of latex allergy and its implied risk.

    OBJECTIVE:
    The study examines how imperfect test specificity of in vitro assays influences the precision of latex allergy prevalence that it estimates.

    METHODS:
    Various models encompassing a range of hypothetical test sensitivity and specificity values are investigated to gauge their influence on the estimate of latex allergy prevalence. The models examine these interactions in situations of high or low allergy prevalence.

    RESULTS:
    Serologic latex diagnostic assays with test specificity within the range of those of commercially available assays can greatly overestimate prevalence where the true prevalence is low (eg, of the order of one in 100 or one in 1,000). A formula to correct for errors in prevalence estimates arising from imperfect test sensitivity and specificity of an in vitro assay is presented.

    CONCLUSION:
    While serologic assays for latex IgE pose few hazards to the patient and are useful for confirming the diagnosis of latex allergy, the test results may vastly overestimate the true prevalence of latex allergy and its associated risks in situations where latex allergy is actually rare.
    Matched MeSH terms: Latex Hypersensitivity/diagnosis; Latex Hypersensitivity/epidemiology*
  7. Yeang HY, Arif SA, Yusof F, Sunderasan E
    Methods, 2002 May;27(1):32-45.
    PMID: 12079415 DOI: 10.1016/S1046-2023(02)00049-X
    As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.
    Matched MeSH terms: Latex/immunology*; Latex Hypersensitivity/immunology*
  8. Yeang HY, Ward MA, Zamri AS, Dennis MS, Light DR
    Allergy, 1998 May;53(5):513-9.
    PMID: 9636811
    Separate studies have reported spina bifida patients to be especially allergic to proteins of 27 and 23 kDa found in the serum of centrifuged natural rubber latex. An insoluble latex protein located on the surface of small rubber particles, Hev b 3, has similarly been found to be allergenic to spina bifida patients. In this study, internal amino acid sequences of Hev b 3 showed similarity to the published sequences for the 27- and 23-kDa latex proteins. The latter allergens are hence identified as Hev b 3. Determination of the molecular weight of Hev b 3 revealed various species of 22-23 kDa. The consistent gaps of about 266 Da observed between various forms of the intact protein suggest that the protein undergoes post-translational modification. To determine whether Hev b 3 also occurs in a soluble form in the latex serum, its presence in molecular-filtered serum was checked by ELISA and Western blot. The results showed Hev b 3 to be largely absent in the C-serum from fresh latex. The protein is therefore insoluble in its native state. However, a small amount of the solubilized protein was detected in ammonia-stabilized latex (commonly used in the manufacture of latex products).
    Matched MeSH terms: Latex/immunology*
  9. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, et al.
    J Allergy Clin Immunol, 1996 Sep;98(3):628-39.
    PMID: 8828541 DOI: 10.1016/s0091-6749(96)70097-0
    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.
    Matched MeSH terms: Latex/immunology*; Latex/metabolism; Latex/chemistry
  10. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
    Matched MeSH terms: Latex/chemistry*
  11. Yeang HY
    Curr Opin Allergy Clin Immunol, 2004 Apr;4(2):99-104.
    PMID: 15021061
    PURPOSE OF REVIEW:
    New allergenic latex proteins have been identified, whereas further information on known latex allergens has emerged in recent years. Although prevalence figures for sensitization to the various latex allergens have been published in several studies in the past, the data have not been collated to facilitate cross-comparison.

    RECENT FINDINGS:
    Salient characteristics of the three most recently identified latex allergens, Hev b 11, 12 and 13 are described, whereas new findings on some of the previously recognized allergens are examined. Hev b 2 is viewed from the standpoint of allergenicity and protein glycosylation, Hev b 4 in relation to its biochemical identity and molecular cloning, Hev b 5 with respect to its recombinant form, and Hev b 6 in connection with conformational IgE epitopes. Reports on sensitization or allergic reaction to purified latex allergens from recent and past work are summarized. The use of latex allergens in latex allergy diagnostics is reviewed and discussed.

    SUMMARY:
    Thirteen latex allergens have been recognized by the International Union of Immunological Societies. Based on the results of published studies, native Hev b 2, recombinant Hev b 5, native or recombinant Hev b 6, native Hev b 13, and possibly native Hev b 4 are the major allergens relevant to latex-sensitized adults. Although there is an increasing tendency to identify and characterize latex allergens largely on the basis of their recombinant forms, not all such recombinant proteins have been fully validated against their native counterparts with respect to clinical significance.
    Matched MeSH terms: Latex/adverse effects*; Latex/classification; Latex Hypersensitivity/diagnosis; Latex Hypersensitivity/etiology*
  12. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Latex Hypersensitivity/diagnosis*; Latex Hypersensitivity/immunology
  13. Yap KL, Ooi YE, Khor CM, Wong SH
    Malays J Pathol, 1992 Dec;14(2):105-10.
    PMID: 1338997
    The group A rotavirus staphylococcal co-agglutination test was evaluated and its sensitivity and specificity compared with an in-house enzyme-linked immunosorbent assay (ELISA) and a commercial latex agglutination test (Rotalex). In addition, the storage stability of the staphylococcal reagents was ascertained. Examination of 136 clarified suspensions of diarrhoeal faeces by the staphylococcal co-agglutination test revealed a high proportion of false positives (26%) and uninterpretable results (34%) due to non-specific agglutination. Non-specific agglutination could be removed effectively by prior absorption of the clarified faecal specimens with unsensitized staphylococci. The staphylococcal co-agglutination test was less sensitive and specific than the in-house enzyme-linked immunosorbent assay but was comparable to the Rotalex slide latex agglutination test. The staphylococcal reagents have a shelf life of at least 29 weeks.
    Matched MeSH terms: Latex Fixation Tests
  14. Yap KL
    Malays J Pathol, 1994 Jun;16(1):49-56.
    PMID: 16329576
    The aim of this study was to optimize the conditions for the passive adsorption of polyclonal antibody onto plain surface polystyrene latex particles and its performance in a slide latex agglutination test for rotavirus antigen detection. Cleaning of latex particles by washing through repetitive centrifuging, decanting and resuspending in distilled water was adequate in removing surfactants from the particles' surfaces to enable coating. A study of antibody concentration, incubation temperature and buffer pH revealed that optimum coating was achieved with a 3-fold excess of antibody to the calculated total particle surface capacity for the antibody in a glycine-saline buffer of pH 9.2 at 40 degrees C for 4 hours. The ionic strength and pH of the latex suspending buffer and the sample buffer were critical factors determining the sensitivity of the test and the appearance of non-specific agglutination. Ultrasonication, addition of glycerol and Tween 20, either individually or in combination, were able to suppress non-specific agglutination in some batches of latex reagents. Polyethylene glycol 6000 enhanced the quality of agglutination as well as reduced the time of its appearance, especially in reagents that produced poor agglutination.
    Matched MeSH terms: Latex Fixation Tests/methods*
  15. Wu Q, Patocka J, Nepovimova E, Kuca K
    J Ethnopharmacol, 2019 Apr 24;234:197-203.
    PMID: 30695706 DOI: 10.1016/j.jep.2019.01.022
    ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha gossypiifolia L. (Euphorbiaceae) is popularly known as bellyache bush or black physic nut and is widely used in local / traditional medicine due to the various biological activities attributed to its different parts, including its leaves, roots, and latex.

    AIM OF THE STUDY: In this review, we aim to update and discuss the chemistry, specific pharmacology, and toxicological activities of Jatropha gossypiifolia and its bioactive metabolites.

    MATERIALS AND METHODS: The Web of Science, PubMed, Google Scholar, SciFinder, Cochrane Library, Scopus, and Science Direct databases were searched with the name "Jatropha gossypiifolia" and the term "bioactive metabolites". All studies on the chemistry, pharmacology, and toxicology of the plant up to December 2018 were included in this review.

    RESULTS: Jatropha gossypiifolia leaves are considered to have anti-inflammatory, antimicrobial and insecticidal properties. The root and stem have anti-inflammatory and antimicrobial properties. The seeds and fruits can be used against influenza and as a sedative, analgesic or anti-diarrheal agents. The latex is bactericidal and molluscicidal. Topical application of latex is used to treat wounds and bites of venomous animals. The diluted form is usually used for the treatment of diarrhoea by indigenous peoples.

    CONCLUSIONS: The main pharmacological activities of Jatropha gossypiifolia include anti-inflammatory, antineoplastic, antimicrobial, antioxidant, and anticholinesterase, and antihypertensive activities. Species of Jatropha are notably known for their toxic potential, and their toxicity is primarily related to the latex and seed contents. However, the potential mechanisms of these pharmacological activities have not been fully explored. We hope this review will help to further inform the potential utilization of Jatropha gossypiifolia in complementary and alternative medicine.

    Matched MeSH terms: Latex
  16. Wan, Ngeow Yen, Chin, Khaw Pei, Che Su Mt. Saad
    MyJurnal
    Reclaimed rubber from rejected natural rubber (NR) latex gloves (r-NRG) was evaluated as partial
    replacement for Standard Malaysian Rubber (SMR) 20 in producing microcellular rubber. In the study, the amount of reclaimed rubber varied from 20 pphr to 95 pphr for the purpose of cost reduction, environmental interest and as processing aids in reducing internal porosity, swells and to minimize shrinkage and air-trapped problems in producing microcellular rubber. A typical formulation in making microcellular rubber slab was developed and two-roll mill was used for compounding. The cure characteristics and mechanical properties, such as density, hardness, tensile strength, and elongation at break, were evaluated. Scorch time and cure rate index performed marginal decreased with increasing of r-NRG content. 95 pphr r-NRG blends showed a consequential drop in hardness. Both tensile properties and elongation at break decreased as the r-NRG content was increased.
    Matched MeSH terms: Latex
  17. Wagner B, Krebitz M, Buck D, Niggemann B, Yeang HY, Han KH, et al.
    J Allergy Clin Immunol, 1999 Nov;104(5):1084-92.
    PMID: 10550757
    BACKGROUND: Two natural rubber latex proteins, Hev b 1 and Hev b 3, have been described in spina bifida (SB)-associated latex allergy.

    OBJECTIVE: The aim of this study was to clone and express Hev b 3 and to obtain the immunologic active and soluble recombinant allergen for diagnosis of SB-associated latex allergy.

    METHODS: A complementary DNA (cDNA) coding for Hev b 3 was amplified from RNA of fresh latex collected from Malaysian rubber trees (Hevea brasiliensis). PCR primers were designed according to sequences of internal peptide fragments of natural (n) Hev b 3. The 5'-end sequence was obtained by specific amplification of cDNA ends. The recombinant (r) Hev b 3 was produced in Escherichia coli as a 6xHis tagged protein. Immunoblotting and inhibition assays were performed to characterize the recombinant allergen.

    RESULTS: An Hev b 3 cDNA clone of 922 bp encoding a protein of 204 amino acid residues corresponding to a molecular weight of 22.3 kd was obtained. In immunoblots 29/35, latex-allergic patients with SB revealed IgE binding to rHev b 3, as did 4 of 15 of the latex-sensitized group. The presence of all IgE epitopes on rHev b 3 was shown by its ability to abolish all IgE binding to nHev b 3. Hev b 3 is related to Hev b 1 by a sequence identity of 47%. Cross-reactivity between these 2 latex allergens was illustrated by the large extent of inhibition of IgE binding to nHev b 1 by rHev b 3.

    CONCLUSION: rHev b 3 constitutes a suitable in vitro reagent for the diagnosis of latex allergy in patients with SB. The determination of the full sequence of Hev b 3 and the production of the recombinant allergen will allow the epitope mapping and improve diagnostic reagents for latex allergy.

    Matched MeSH terms: Latex/immunology*; Latex Hypersensitivity/blood; Latex Hypersensitivity/complications; Latex Hypersensitivity/immunology*
  18. Ullah MZ, Awais MM, Akhtar M, Anwar MI, Navid MT, Khan I, et al.
    Trop Biomed, 2018 Dec 01;35(4):1028-1040.
    PMID: 33601850
    Toxoplasmosis is a protozoal infection of zoonotic potential with worldwide geographical distribution which affects nearly all warm-blooded animals including mammals and birds. Keeping in view, this study was conducted to determine the seroprevalence of toxoplasmosis along with associated risk factors and its haematological impacts in small ruminants of district Multan, Pakistan. In this study, a total of 250 sera samples collected from sheep (n=125) and goats (n=125) from three tehsils of Multan were examined using commercially available Latex agglutination test kit for the presence of anti-T. gondii antibodies. The haematological profiles of Toxoplasma seropositive and seronegative animals were determined by using automated haematology analyser. Overall seroprevalence of toxoplasmosis in small ruminants was 42.80% with a higher prevalence rate (44.80%) in sheep as compared to goats (40.80%). Sex, existence of co-morbid conditions, feeding pattern and presence of pet cats and dogs were identified as significant (P<0.05) risk factors associated with the presence of antibodies against toxoplasmosis. The breed was found to be a significant (P=0.026) risk factor for the seroprevalence of toxoplasmosis in goats but not in sheep. Haematological analysis revealed significantly altered leukocytic counts (P<0.05) in seropositive sheep and goats as compared to seronegative ones. Our findings showed that small ruminants of the Multan District in Pakistan are toxoplasma seropositive and may pose a serious threat of public health concern in the region.
    Matched MeSH terms: Latex Fixation Tests
  19. Turjanmaa K, Palosuo T, Alenius H, Leynadier F, Autegarden JE, André C, et al.
    Allergy, 1997 Jan;52(1):41-50.
    PMID: 9062628
    For the diagnosis of IgE-mediated (immediate) hypersensitivity to natural rubber latex (NRL), skin prick testing with extracts of latex gloves has been widely used, but such extracts are difficult to standardize. The present study aimed to produce on an industrial scale an NRL extract from freshly collected NRL and to evaluate, calibrate, and standardize the extract by both in vivo and in vitro testing. The source material, latex of the rubber tree, Hevea brasiliensis (clone RRIM 600), was frozen immediately after collection in Malaysia and shipped in dry ice to Stallergènes SA, France. Protein and allergen profiles were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, isoelectric focusing (IEF), crossed immunoelectrophoresis (CIE), and crossed radioimmunoelectrophoresis (CRIE). Allergen quantification was effected by RAST inhibition. The capacity of the preparation to elicit immediate hypersensitivity reactions in vivo was measured by skin prick testing in 46 latex-allergic patients and 76 nonallergic control subjects. SDS-PAGE and immunoblot profiles of the extract and an NRL standard (E8) provided by the US Food and Drug Administration were almost identical, disclosing several distinct IgE-binding proteins with apparent molecular weights of 14, 20, 27, 30, and 45 kDa, conforming to reported molecular weights of several significant NRL allergens. An arbitrary index of reactivity (IR) of 100 was assigned to the extract at 1:200 dilution (w/v), having a protein content of 22 micrograms/ml. Skin prick testing of latex-allergic patients and controls using the extract at 100 IR revealed 93% sensitivity, 100% specificity, 100% negative predictive value, and 96% positive predictive value. In conclusion, a skin prick test reagent for diagnosis of type I NRL allergy was successfully standardized. The reagent was demonstrated to contain most, if not all, of the currently known clinically significant NRL allergens, and it showed high sensitivity and specificity.
    Matched MeSH terms: Latex/administration & dosage; Latex/immunology*; Latex/standards*
  20. Tong CY, Derek CJC
    Sci Total Environ, 2023 Aug 20;887:163857.
    PMID: 37149157 DOI: 10.1016/j.scitotenv.2023.163857
    Bio-coatings serve as artificial scaffolds for immobilizing microalgae to facilitate cell concentration and harvesting. It has been used as an additional step to enhance the natural microalgal biofilm cultivation and to promote new opportunities in artificially-immobilize cultivation technology of microalgae. This technique is able to enhance biomass productivities, enable energy and cost saving, water volume reduction and ease of biomass harvesting since the cells are physically isolated from the liquid medium. However, scientific discoveries of bio-coatings for process intensification are still lacking and their working principles remained unclear. Therefore, this critical review aims to shed light on the advancement of cell encapsulation systems (hydrogel coating, artificial leaf, bio-catalytic latex coating, and cellular polymeric coating) over the years and aid in the selection of appropriate bio-coating techniques for various applications. Discussion on the different preparation routes of bio-coatings, as well as the exploration towards the potential of bio-based coating materials such as natural/synthetic polymers, latex binders, and algal organic matters are also included, with a focus on sustainable pursuits. This review also presents in-depth investigations into the environmental applications of bio-coatings in wastewater remediation, air purification, carbon bio-fixation, and bio-electricity. The field of bio-coating in microalgae immobilization gives rise to a new ecofriendly strategy with scalable cultivation footprint and a balanced environmental risk aligning with the United Nation's Sustainable Development Goals with potential towards the contribution of Zero Hunger, Clean Water and Sanitation, Affordable and Clean Energy, and Responsible Consumption and Production.
    Matched MeSH terms: Latex
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links