Displaying publications 1 - 20 of 326 in total

Abstract:
Sort:
  1. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
    Matched MeSH terms: MCF-7 Cells
  2. Ahmed Hamdi OA, Syed Abdul Rahman SN, Awang K, Abdul Wahab N, Looi CY, Thomas NF, et al.
    ScientificWorldJournal, 2014;2014:321943.
    PMID: 25126594 DOI: 10.1155/2014/321943
    Curcuma zedoaria also known as Temu putih is traditionally used in food preparations and treatment of various ailments including cancer. The cytotoxic activity of hexane, dichloromethane, ethyl acetate, methanol, and the methanol-soxhlet extracts of Curcuma zedoaria rhizomes was tested on two human cancer cell lines (Ca Ski and MCF-7) and a noncancer cell line (HUVEC) using MTT assay. Investigation on the chemical components in the hexane and dichloromethane fractions gave 19 compounds, namely, labda-8(17),12 diene-15,16 dial (1), dehydrocurdione (2), curcumenone (3), comosone II (4), curcumenol (5), procurcumenol (6), germacrone (7), zerumbone epoxide (8), zederone (9), 9-isopropylidene-2,6-dimethyl-11-oxatricyclo[6.2.1.0(1,5)]undec-6-en-8-ol (10), furanodiene (11), germacrone-4,5-epoxide (12), calcaratarin A (13), isoprocurcumenol (14), germacrone-1,10-epoxide (15), zerumin A (16), curcumanolide A (17), curcuzedoalide (18), and gweicurculactone (19). Compounds (1-19) were evaluated for their antiproliferative effect using MTT assay against four cancer cell lines (Ca Ski, MCF-7, PC-3, and HT-29). Curcumenone (3) and curcumenol (5) displayed strong antiproliferative activity (IC50 = 8.3 ± 1.0 and 9.3 ± 0.3 μg/mL, resp.) and were found to induce apoptotic cell death on MCF-7 cells using phase contrast and Hoechst 33342/PI double-staining assay. Thus, the present study provides basis for the ethnomedical application of Curcuma zedoaria in the treatment of breast cancer.
    Matched MeSH terms: MCF-7 Cells
  3. Lay MM, Karsani SA, Mohajer S, Abd Malek SN
    PMID: 24885709 DOI: 10.1186/1472-6882-14-152
    The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts.
    Matched MeSH terms: MCF-7 Cells
  4. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: MCF-7 Cells
  5. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN
    PMID: 23762112 DOI: 10.1155/2013/257108
    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: MCF-7 Cells
  6. Ho YF, Karsani SA, Yong WK, Abd Malek SN
    PMID: 23533528 DOI: 10.1155/2013/857257
    Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
    Matched MeSH terms: MCF-7 Cells
  7. Yau Hsiung W, Abdul Kadir H
    PMID: 21423690 DOI: 10.1155/2011/293060
    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G(1) cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs.
    Matched MeSH terms: MCF-7 Cells
  8. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
    Matched MeSH terms: MCF-7 Cells
  9. Ashraf MF, Abd Aziz M, Stanslas J, Ismail I, Abdul Kadir M
    ScientificWorldJournal, 2013;2013:216894.
    PMID: 24223502 DOI: 10.1155/2013/216894
    The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β -carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL(-1)), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL(-1)). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line.
    Matched MeSH terms: MCF-7 Cells
  10. Iqbal MA, Haque RA, Ahamed SA, Jafari SF, Khadeer Ahamed MB, Abdul Majid AM
    Med Chem, 2015;11(5):473-81.
    PMID: 25553509
    Azolium (imidazolium and benzimidazolium) salts are known as stable precursors for the synthesis of Metal-N-Heterocyclic Carbene (M-NHC) complexes. Recently, some reports have been compiled indicating that benzimidazolium salts have anticarcinogenic properties. The current research is the further investigation of this phenomenon. Three ortho-xylene linked bis-benzimidazolium salts (1-3) with octyl, nonyl and decyl terminal chain lengths have been synthesized. Each of the compounds was characterized using FT-IR and NMR spectroscopic techniques. The molecular geometries of two of the salts (1-2) have been established using X-ray crystallographic technique. The compounds were tested for their cytotoxic properties against three cancerous cell lines namely, human colon cancer (HCT 116), human colorectal adenocarcinoma (HT- 29) and human breast adenocarcinoma (MCF-7). Mouse embryonic fibroblast (3T3-L1) was used as the model cell line of normal cells. The compounds showed selective anti-proliferative activities against the colorectal carcinoma cells. For HCT 116 and HT-29 cells, the IC50 values ranged 0.9-2.6 µM and 4.0-10.0 µM, respectively. The salts 1 and 3 displayed moderate cytotoxicity against the breast cancer (MCF-7) cells with IC50 58.2 and 13.3 µM, respectively. However, the salt 2 produced strong cytotoxicity against MCF-7 cells with IC50 4.4 µM. Interestingly, the compounds demonstrated poor cytotoxic effects towards the normal cells (3T3-L1) as the IC50 was found to be as high as 48.0 µM. Salts 2 and 3 demonstrated more pronounced anti-proliferative effect than the standard drugs used (5-Flourouracil and Tamoxifen).
    Matched MeSH terms: MCF-7 Cells
  11. Dahham SS, Al-Rawi SS, Ibrahim AH, Abdul Majid AS, Abdul Majid AMS
    Saudi J Biol Sci, 2018 Dec;25(8):1524-1534.
    PMID: 30591773 DOI: 10.1016/j.sjbs.2016.01.031
    Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p 
    Matched MeSH terms: MCF-7 Cells
  12. Joseph J, Khor KZ, Moses EJ, Lim V, Aziz MY, Abdul Samad N
    Int J Nanomedicine, 2021;16:3599-3612.
    PMID: 34079252 DOI: 10.2147/IJN.S303921
    Purpose: Vernonia amygdalina (VA) is a traditional African herbal medicine that has been reported to possess anticancer properties. However, the anticancer properties of VA silver nanoparticles have not been studied. The aim of the study was to examine and evaluate the anticancer activities of VA leaf extracts and VA silver nanoparticles on the human breast cancer cell line, MCF-7.

    Methods: VA leaves were extracted using sequential extraction assisted with ultrasound using three different solvents: ethanol, 50% ethanol, and deionized water. The silver nanoparticles were synthesised with VA aqueous extract.

    Results: The ethanol extract and VA silver nanoparticles inhibit MCF-7 cell proliferation with an average half-maximal inhibitory concentration (IC50) value of 67µg/mL and 6.11µg/mL, respectively, after 72 hours of treatment. The ethanol extract and VA silver nanoparticles also caused G1 phase cell cycle arrest, induced apoptosis and nuclear fragmentation in MCF-7 cells.

    Conclusion: VA ethanol extracts and VA silver nanoparticles decreased the cell viability in MCF-7 cells in a time and dose-dependent manner by inducing apoptosis and causing DNA damage. Further research is needed to elucidate the mechanism of action of VA leaf extracts and VA silver nanoparticles. This study is the first to report on the anticancer activity of VA silver nanoparticles in MCF-7 cells.

    Matched MeSH terms: MCF-7 Cells
  13. Abrahim NN, Kanthimathi MS, Abdul-Aziz A
    BMC Complement Altern Med, 2012 Nov 15;12:220.
    PMID: 23153283 DOI: 10.1186/1472-6882-12-220
    BACKGROUND: Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7.

    METHODS: The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells.

    RESULTS: Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase.

    CONCLUSIONS: Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

    Matched MeSH terms: MCF-7 Cells
  14. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: MCF-7 Cells
  15. Ibrahim MD, Kntayya SB, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Molecules, 2018 Nov 27;23(12).
    PMID: 30486382 DOI: 10.3390/molecules23123092
    Glucoraphasatin (GRH), a glucosinolate present abundantly in the plants of the Brassicaceae family, is hydrolyzed by myrosinase to raphasatin, which is considered responsible for its cancer chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aims of this study are to determine the cytotoxicity of raphasatin, and to evaluate its potential to cause apoptosis and modulate cell cycle arrest in human breast adenocarcinoma MCF-7 cells. The cytotoxicity was determined following incubation of the cells with glucoraphasatin or raphasatin (0⁻100 µM), for 24, 48, and 72 h. GRH displayed no cytotoxicity as exemplified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. When myrosinase was added to the incubation system to convert GRH to raphasatin, cytotoxicity was evident. Exposure of the cells to raphasatin stimulated apoptosis, as was exemplified by cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Moreover, using Annexin V-FITC assay, raphasatin induced apoptosis, as witnessed by changes in cellular distribution of cells, at different stages of apoptosis; in addition, raphasatin caused the arrest of the MCF-7 cells at the G₂ + M phase. In conclusion, raphasatin demonstrated cancer chemopreventive potential against human breast adenocarcinoma (MCF-7) cells, through induction of apoptosis and cell cycle arrest.
    Matched MeSH terms: MCF-7 Cells
  16. Arumugam A, Ibrahim MD, Kntayya SB, Mohd Ain N, Iori R, Galletti S, et al.
    Molecules, 2020 Mar 09;25(5).
    PMID: 32182965 DOI: 10.3390/molecules25051240
    Gluconasturtiin, a glucosinolate present in watercress, is hydrolysed by myrosinase to form gluconasturtiin-isothiocyanate (GNST-ITC), which has potential chemopreventive effects; however, the underlying mechanisms of action have not been explored, mainly in human cell lines. The purpose of the study is to evaluate the cytotoxicity of GNST-ITC and to further assess its potential to induce apoptosis. GNST-ITC inhibited cell proliferation in both human hepatocarcinoma (HepG2) and human breast adenocarcinoma (MCF-7) cells with IC50 values of 7.83 µM and 5.02 µM, respectively. Morphological changes as a result of GNST-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GNST-ITC in a time-dependent manner. To delineate the mechanism of apoptosis, cell cycle arrest and expression of caspases were studied. GNST-ITC induced a time-dependent G2/M phase arrest, with reduction of 82% and 93% in HepG2 and MCF-7 cell lines, respectively. The same treatment also led to the subsequent expression of caspase-3/7 and -9 in both cells demonstrating mitochondrial-associated cell death. Collectively, these results reveal that GNST-ITC can inhibit cell proliferation and can induce cell death in HepG2 and MCF-7 cancer cells via apoptosis, highlighting its potential development as an anticancer agent.
    Matched MeSH terms: MCF-7 Cells
  17. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: MCF-7 Cells
  18. ShujaaEdin HY, Al-Haj NA, Rasedee A, Alitheen NB, Kadir AA, How CW, et al.
    Saudi J Biol Sci, 2021 Apr;28(4):2549-2557.
    PMID: 33935571 DOI: 10.1016/j.sjbs.2021.01.059
    Recombinant human erythropoietin (rHuEPO) is the erythropoiesis-stimulating hormone that is being used concurrently with chemotherapeutic drugs in the treatment of anemia of cancer. The effect of rHuEPO on cancer cells in 3-dimensional (3D) cultures is not known. The objective of the study was to determine the effect of rHuEPO on the viability of MCF-7 breast cancer cells from 2-dimensional (2D) and 3D cell cultures. The monolayer MCF-7 cells from 2D culture and MCF-7 cell from 3D culture generated by ultra-low adhesive microplate technique, were treated with 0, 0.1, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The effects of rHuEPO on MCF-7 cell viability and proliferation were determined using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red retention time (NRRT), trypan blue exclusion assay (TBE), DNA fragmentation, acridine orange/propidium iodide staining (AO/PI) assays. The MCF-7 cells for 3D culture were also subjected to caspase assays and cell cycle analysis using flow cytometry. rHuEPO appeared to have greater effect at lowering the viability of MCF-7 cells from 3D than 2D cultures. rHuEPO significantly (p MCF-7 cells in dose- and time-dependent manner. The cell cycle analysis showed that rHuEPO caused MCF-7 cells to enter the subG0/G1 phase. Thus, the study suggests that rHuEPO has a cytostatic effect on the MCF-7 breast cancer cells from 3D culture.
    Matched MeSH terms: MCF-7 Cells
  19. Hussein HA, Maulidiani M, Abdullah MA
    Heliyon, 2020 Oct;6(10):e05263.
    PMID: 33102866 DOI: 10.1016/j.heliyon.2020.e05263
    Heavy metal pollution has become a major concern globally as it contaminates eco-system, water networks and as finely suspended particles in air. In this study, the effects of elevated silver nanoparticle (AgNPs) levels as a model system of heavy metals, in the presence of microalgal crude extracts (MCEs) at different ratios, were evaluated against the non-cancerous Vero cells, and the cancerous MCF-7 and 4T1 cells. The MCEs were developed from water (W) and ethanol (ETH) as green solvents. The AgNPs-MCEs-W at the 4:1 and 5:1 ratios (v/v) after 48 and 72 h treatment, respectively, showed the IC50 values of 83.17-95.49 and 70.79-91.20 μg/ml on Vero cells, 13.18-28.18 and 12.58-25.7 μg/ml on MCF-7; and 16.21-33.88 and 14.79-26.91 μg/ml on 4T1 cells. In comparison, the AgNPs-MCEs-ETH formulation achieved the IC50 values of 56.23-89.12 and 63.09-91.2 μg/ml on Vero cells, 10.47-19.95 and 13.48-26.61 μg/ml on MCF-7; 14.12-50.11 and 15.13-58.88 μg/ml on 4T1 cells, respectively. After 48 and 72 h treatment, the AgNPs-MCE-CHL at the 4:1 and 5:1 ratios exhibited the IC50 of 51.28-75.85 and 48.97-69.18 μg/ml on Vero cells, and higher cytotoxicity at 10.47-16.98 and 6.19-14.45 μg/ml against MCF-7 cells, and 15.84-31.62 and 12.58-24.54 μg/ml on 4T1 cells, respectively. The AgNPs-MCEs-W and ETH resulted in low apoptotic events in the Vero cells after 24 h, but very high early and late apoptotic events in the cancerous cells. The Liquid Chromatography-Mass Spectrometry-Electrospray Ionization (LC-MS-ESI) metabolite profiling of the MCEs exhibited 64 metabolites in negative ion and 56 metabolites in positive ion mode, belonging to different classes. The microalgal metabolites, principally the anti-oxidative components, could have reduced the toxicity of the AgNPs against Vero cells, whilst retaining the cytotoxicity against the cancerous cells.
    Matched MeSH terms: MCF-7 Cells
  20. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links