Displaying publications 1 - 20 of 172 in total

Abstract:
Sort:
  1. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2011;12(8):5238-54.
    PMID: 21954355 DOI: 10.3390/ijms12085238
    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.
    Matched MeSH terms: Metabolomics*
  2. Yap, Ivan K.S.
    MyJurnal
    Metabonomics can be used to quantitatively measure dynamic biochemical responses of living organisms to physiological or pathological stimuli. A range of analytical tools such as high-resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) combined with multivariate statistical analysis can be employed to create comprehensive metabolic signatures of biological samples including urine, plasma, faecal water and tissue extracts. These metabolic signatures can reflect the physiological or pathological condition of the organism and indicate imbalances in the homeostatic regulation of tissues and extracellular fluids. This technology has been employed in a diverse range of application areas including investigation of disease mechanisms, diagnosis/prognosis of pathologies, nutritional interventions and drug toxicity. Metabolic profiling is becoming increasingly important in identifying biomarkers of disease progression and drug intervention, and can provide additional information to support or aid the interpretation of genomic and proteomic data. With the new generation of postgenomic technologies, the paradigm in many biological fields has shifted to either top down systems biology approaches, aiming to achieve a general understanding of the global and integrated response of an organism or to bottom up modelling of specific pathways and networks using a priori knowledge based on mining large bodies of literature. Whilst metabolic profiling lends itself to either approach, using it in an exploratory and hypothesis generating capacity clearly allows new mechanisms to be uncovered.
    Matched MeSH terms: Metabolomics
  3. Azizan KA, Baharum SN, Mohd Noor N
    Molecules, 2012 Jul 03;17(7):8022-36.
    PMID: 22759915 DOI: 10.3390/molecules17078022
    Gas chromatography mass spectrometry (GC-MS) and headspace gas chromatography mass spectrometry (HS/GC-MS) were used to study metabolites produced by Lactococcus lactis subsp. cremoris MG1363 grown at a temperature of 30 °C with and without agitation at 150 rpm, and at 37 °C without agitation. It was observed that L. lactis produced more organic acids under agitation. Primary alcohols, aldehydes, ketones and polyols were identified as the corresponding trimethylsilyl (TMS) derivatives, whereas amino acids and organic acids, including fatty acids, were detected through methyl chloroformate derivatization. HS analysis indicated that branched-chain methyl aldehydes, including 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal are degdradation products of isoleucine, leucine or valine. Multivariate analysis (MVA) using partial least squares discriminant analysis (PLS-DA) revealed the major differences between treatments were due to changes of amino acids and fermentation products.
    Matched MeSH terms: Metabolomics/methods*
  4. Ibrahim MH, Jaafar HZ
    Molecules, 2012;17(5):5195-211.
    PMID: 22628041 DOI: 10.3390/molecules17055195
    A split plot 3 by 3 experiment was designed to investigate the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total flavonoids, TF; total phenolics, TP), phenylalanine lyase (PAL) activity (EC 4.3.1.5), protein and antioxidant activity (FRAP) of three progenies of oil palm seedlings, namely Deli AVROS, Deli Yangambi and Deli URT, under three levels of CO₂ enrichment (400, 800 and 1,200 μmol·mol⁻¹) for 15 weeks of exposure. During the study, the treatment effects were solely contributed by CO₂ enrichment levels; no progenies and interaction effects were observed. As CO₂ levels increased from 400 to 1,200 μmol·mol⁻¹, the production of carbohydrate increased steadily, especially for starch more than soluble sugar. The production of total flavonoids and phenolics contents, were the highest under 1,200 and lowest at 400 μmol·mol⁻¹. It was found that PAL activity was peaked under 1,200 μmol·mol⁻¹ followed by 800 μmol·mol⁻¹ and 400 μmol·mol⁻¹. However, soluble protein was highest under 400 μmol·mol⁻¹ and lowest under 1,200 μmol·mol⁻¹. The sucrose/starch ratio, i.e., the indication of sucrose phosphate synthase actvity (EC 2.4.1.14) was found to be lowest as CO₂ concentration increased from 400 > 800 > 1,200 μmol·mol⁻¹. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased with increasing CO₂ levels, and was significantly lower than vitamin C and α-tocopherol but higher than butylated hydroxytoluene (BHT). Correlation analysis revealed that nitrogen has a significant negative correlation with carbohydrate, secondary metabolites and FRAP activity indicating up-regulation of production of carbohydrate, secondary metabolites and antioxidant activity of oil palm seedling under elevated CO₂ was due to reduction in nitrogen content in oil palm seedling expose to high CO₂ levels.
    Matched MeSH terms: Metabolomics
  5. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Int J Mol Sci, 2012;13(11):15321-42.
    PMID: 23203128 DOI: 10.3390/ijms131115321
    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
    Matched MeSH terms: Metabolomics*
  6. Gooda Sahib N, Saari N, Ismail A, Khatib A, Mahomoodally F, Abdul Hamid A
    ScientificWorldJournal, 2012;2012:436039.
    PMID: 22666121 DOI: 10.1100/2012/436039
    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.
    Matched MeSH terms: Metabolomics
  7. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, et al.
    PMID: 23243448 DOI: 10.1155/2012/473637
    Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology.
    Matched MeSH terms: Metabolomics
  8. Neoh BK, Teh HF, Ng TL, Tiong SH, Thang YM, Ersad MA, et al.
    J Agric Food Chem, 2013 Feb 27;61(8):1920-7.
    PMID: 23384169 DOI: 10.1021/jf304561f
    Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs.
    Matched MeSH terms: Metabolomics
  9. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013 Apr 08;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
    Matched MeSH terms: Metabolomics/methods*
  10. Shafiee MN, Chapman C, Barrett D, Abu J, Atiomo W
    Gynecol Oncol, 2013 Nov;131(2):489-92.
    PMID: 23822891 DOI: 10.1016/j.ygyno.2013.06.032
    Endometrial cancer (EC) is the commonest gynaecological cancer in North American and European women. Even though it has been shown that women with polycystic ovary syndrome (PCOS) have a three-fold increase in the risk of developing EC compared to women without PCOS, the precise molecular mechanisms which increase EC risk in women with PCOS remain unclear. Clinical strategies to prevent EC in PCOS are therefore not well researched and understood. Although raised estrogen levels, hyperinsulinaemia and, reduced apoptosis have been suggested as potential mechanisms, there is a lack of clarity about how these factors and other factors may interact to increase EC risk in PCOS. This article reviews the literature, on the potential molecular links between PCOS and EC but argues for a paradigm shift, to a systems biology-based approach in future research into the molecular links between PCOS and EC. The potential challenges of a systems biology-based approach are outlined but not considered insurmountable.
    Matched MeSH terms: Metabolomics
  11. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Metabolomics/methods
  12. Samat N, Tan PJ, Shaari K, Abas F, Lee HB
    Anal Chem, 2014 Feb 4;86(3):1324-31.
    PMID: 24405504 DOI: 10.1021/ac403709a
    Photodynamic therapy (PDT) is an alternative treatment for cancer that involves administration of a photosensitive drug or photosensitizer that localizes at the tumor tissue followed by in situ excitation at an appropriate wavelength of light. Tumour tissues are then killed by cytotoxic reactive oxygen species generated by the photosensitizer. Targeted excitation and photokilling of affected tissues is achieved through focal light irradiation, thereby minimizing systemic side effects to the normal healthy tissues. Currently, there are only a small number of photosensitizers that are in the clinic and many of these share the same structural core based on cyclic tetrapyrroles. This paper describes how metabolic tools are utilized to prioritize natural extracts to search for structurally new photosensitizers from Malaysian biodiversity. As proof of concept, we analyzed 278 photocytotoxic extracts using a hyphenated technique of liquid chromatography-mass spectrometry coupled with principal component analysis (LC-MS-PCA) and prioritized 27 extracts that potentially contained new photosensitizers for chemical dereplication using an in-house UPLC-PDA-MS-Photocytotoxic assay platform. This led to the identification of 2 new photosensitizers with cyclic tetrapyrrolic structures, thereby demonstrating the feasibility of the metabolic approach.
    Matched MeSH terms: Metabolomics/methods*
  13. Bannur Z, Teh LK, Hennesy T, Rosli WR, Mohamad N, Nasir A, et al.
    Clin Biochem, 2014 Apr;47(6):427-31.
    PMID: 24582698 DOI: 10.1016/j.clinbiochem.2014.02.013
    Acute lymphoblastic leukaemia (ALL) has posed challenges to the clinician due to variable patients' responses and late diagnosis. With the advance in metabolomics, early detection and personalised treatment are possible.
    Matched MeSH terms: Metabolomics/methods*
  14. Lee LK, Foo KY
    Clin Biochem, 2014 Jul;47(10-11):973-82.
    PMID: 24875852 DOI: 10.1016/j.clinbiochem.2014.05.053
    Infertility is a worldwide reproductive health problem which affects approximately 15% of couples, with male factor infertility dominating nearly 50% of the affected population. The nature of the phenomenon is underscored by a complex array of transcriptomic, proteomic and metabolic differences which interact in unknown ways. Many causes of male factor infertility are still defined as idiopathic, and most diagnosis tends to be more descriptive rather than specific. As such, the emergence of novel transcriptomic and metabolomic studies may hold the key to more accurately diagnose and treat male factor infertility. This paper provides the most recent evidence underlying the role of transcriptomic and metabolomic analysis in the management of male infertility. A summary of the current knowledge and new discovery of noninvasive, highly sensitive and specific biomarkers which allow the expansion of this area is outlined.
    Matched MeSH terms: Metabolomics/methods
  15. Yap IK, Kho MT, Lim SH, Ismail NH, Yam WK, Chong CW
    Mol Biosyst, 2015 Jan;11(1):297-306.
    PMID: 25382376 DOI: 10.1039/c4mb00463a
    Understanding the basal gut bacterial community structure and the host metabolic composition is pivotal for the interpretation of laboratory treatments designed to answer questions pertinent to host-microbe interactions. In this study, we report for the first time the underlying gut microbiota and systemic metabolic composition in BALB/c mice during the acclimatisation period. Our results showed that stress levels were reduced in the first three days of the study when the animals were subjected to repetitive handling daily but the stress levels were increased when handling was carried out at lower frequencies (weekly). We also observed a strong influence of stress on the host metabolism and commensal compositional variability. In addition, temporal biological compartmental variations in the responses were observed. Based on these results, we suggest that consistency in the frequency and duration of laboratory handling is crucial in murine models to minimise the impact of stress levels on the commensal and host metabolism dynamics. Furthermore, caution is advised in consideration of the temporal delay effect when integrating metagenomics and metabonomics data across different biological matrices (i.e. faeces and urine).
    Matched MeSH terms: Metabolomics/methods
  16. Rofiee MS, Yusof MI, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN, et al.
    J Ethnopharmacol, 2015 May 26;166:109-18.
    PMID: 25792013 DOI: 10.1016/j.jep.2015.03.016
    Muntingia calabura L. has been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura.
    Matched MeSH terms: Metabolomics/methods
  17. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
    Matched MeSH terms: Metabolomics
  18. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al.
    BMC Med, 2015 Sep 23;13:242.
    PMID: 26399231 DOI: 10.1186/s12916-015-0462-9
    BACKGROUND: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers.

    METHODS: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.

    RESULTS: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.

    CONCLUSION: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.

    Matched MeSH terms: Metabolomics/methods*
  19. Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z
    PLoS One, 2015;10(4):e0119654.
    PMID: 25849323 DOI: 10.1371/journal.pone.0119654
    Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.
    Matched MeSH terms: Metabolomics/methods*
  20. Lee, Han Hing, Lee, Chee Yen, Shoji, Yoshinobu, Chin, Hoe Teh
    Compendium of Oral Science, 2015;2(1):40-46.
    MyJurnal
    Background: Saliva is a readily accessible biofluid that is important for the overall quality of life, func-tionally essential in the chewing, swallowing, tasting, regulation mouth flora and prevention of caries. The aim of this study is to assess the global metabolomic profile of saliva in healthy Malaysian adults. Methods: As a first step to determining and understanding the metabolomic profile of saliva in healthy Malaysian adults, we have collected saliva samples of 50 adults and measured the salivary metabolite to establish a profiling metabolite data, Human Metabolome Database (HMDB). Metabolites concentrations of saliva in healthy subjects were measured by using 1H NMR spectroscopy. Results: The results showed there was no significant inter-individual variations of the key metabolites observed among the healthy Malaysian adults and there was no significant variation of the metabolites between female and male subjects. Conclusion: The metabolomic profile of saliva in healthy Malaysian adults could be used to establish the metabolomic database and used as a comparison for future study of the saliva of specific diseases.
    Matched MeSH terms: Metabolomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links