Displaying publications 1 - 20 of 171 in total

Abstract:
Sort:
  1. Lim WF, Nasir SM, Teh LK, James RJ, Izhar MHM, Salleh MZ
    Turk J Biol, 2020;44(6):437-448.
    PMID: 33402870 DOI: 10.3906/biy-2005-2
    Garcinia species are widely used for their slimming effects via increased fat burning and suppression of satiety. However, scientific evidence for the biological effects of Garcinia atroviridis (GA) is lacking. We investigated the phytochemical composition, safety profiles, and antioxidant and antiobesity effects of methanolic extracts of Garcinia atroviridis (MeGa) in obese female rats. Repeated dose toxicity studies were conducted according to the OECD guidelines. Upon sacrifice, haematological, biochemical, lipid profile, and serum-based metabolomics analyses were performed to evaluate metabolic expression changes and their related pathways. MeGa contains several phytochemical groups and GA fruit acids. MeGa was found to be nontoxic in both male and female rats with an oral lethal dose (LD50) of 2000 mg/kg. After 9 weeks of treatment, MeGa-treated obese rats had lower weight gain and better lipid profiles (cholesterol and triglyceride), which correlated with the altered metabolic pathways involved in the metabolism of lipid (glycerophospholipid) and biosynthesis of unsaturated fatty acid. In addition, MeGa caused differential metabolism pathways of arachidonic acid and tryptophan that affect the inflammatory response and suppression of appetite. We concluded that MeGa is safe, and its slimming effects are due to the differential metabolism of lipids.
    Matched MeSH terms: Metabolomics
  2. Gooda Sahib N, Saari N, Ismail A, Khatib A, Mahomoodally F, Abdul Hamid A
    ScientificWorldJournal, 2012;2012:436039.
    PMID: 22666121 DOI: 10.1100/2012/436039
    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research.
    Matched MeSH terms: Metabolomics
  3. Abdullah A, Haron N, Mohamed E, Yusof MIM, Shahril MR
    Med J Malaysia, 2024 Mar;79(Suppl 1):158-167.
    PMID: 38555901
    INTRODUCTION: Obesity can be considered a major public health concern throughout the world. Various studies have been conducted to combat the rising number of cases of this health problem. Therefore, identifying the roots of the disease is critical in developing the desperately needed treatment approaches. However, in order to fully understand the origin of this disease, figuring out the metabolites present, and the alterations that occurred in a particular metabolism are crucial, and the information regarding the metabolites involved is limited. The aim of this study is to analyse the literature relevant to the metabolites involved in obesity conditions through a scoping review.

    MATERIALS AND METHODS: This review utilises three databases (SCOPUS, Science Direct, and PubMed). The search phrases used are (Metabolomic* OR Metabolite*) for metabolomic study, (3T3-L1 OR Adipocyte OR "Adipose Tissue") for experimental design, and (Obesity) for obesity condition. Each of the search keywords was separated by an "AND" term in the databases. Other terms related to obesity, such as insulin resistance, heart disease, type 2 diabetes, muscular disorders, respiratory problems, and psychological problems were omitted because they did not contribute to the total number of studies discovered.

    RESULTS: A total of 27 research publications were included in this scoping review. Most of the study focuses on metabolomics in obesity. Metabolites detected were found in various metabolic pathways including amino acids, carbohydrates, lipids as well as other metabolisms. Most of these metabolites discovered in obese conditions showed an alteration when compared to the level of the metabolite in normal conditions.

    CONCLUSION: Unfortunately, these studies had some limitations in which the metabolites detected varied between the articles and the information concerning the relationship between the technique or instrument utilised and the metabolites detected in the samples were not well described. Therefore, using the findings obtained in this study, it can help to determine the direction of the study in the future.

    Matched MeSH terms: Metabolomics
  4. Yusof HM, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Malays J Med Sci, 2018 Sep;25(5):16-34.
    PMID: 30914860 MyJurnal DOI: 10.21315/mjms2018.25.5.3
    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Early diagnosis and accurate staging of the disease is vital to improve the prognosis. Metabolomics has been used to identify changes in metabolite profiles in the different stages of cancer in order to introduce new non-invasive molecular tools for staging. In this systematic review, we aim to identify the common metabolite changes in human biological samples and the dominant metabolic pathways associated with CRC progression. A broad systematic search was carried out from selected databases. Four reviewers screened and reviewed the titles, abstracts, and full-text articles according to the inclusion and exclusion criteria. Quality assessment was conducted on the eight articles which met the criteria. Data showed that the metabolites involved with redox status, energy metabolism and intermediates of amino acids, choline and nucleotides metabolism were the most affected during CRC progression. However, there were differences in the levels of individual metabolites detected between the studies, and this might be due to the study population, sample preparation, analytical platforms used and statistical tools. In conclusion, this systematic review highlights the changes in metabolites from early to late stages of CRC. Moreover, biomarkers for prognosis are important to reduce CRC-related mortality.
    Matched MeSH terms: Metabolomics
  5. Maulidiani M, Mediani A, Abas F, Park YS, Park YK, Kim YM, et al.
    Talanta, 2018 Jul 01;184:277-286.
    PMID: 29674043 DOI: 10.1016/j.talanta.2018.02.084
    Persimmon (Diospyros kaki L.) is one of the most important fruits that has been consumed for its medicinal properties due to the presence of some active metabolites, particularly polyphenols and carotenoids. Previously described methods, including HPLC, were limited in the determination of metabolites in different persimmon varieties. The present study shows the evaluation and the differences among persimmon polar and non-polar extracts by 1H NMR-based metabolomics approach. The hierarchical clustering analysis (HCA) based on score values of principal component analysis (PCA) model was used to analyze the important compounds in investigated fruits. The 1H NMR spectrum of persimmon chloroform (CDCl3) extracts showed different types of compounds as compared to polar methanol-water (CD3OD-D2O) ones. Persimmons growing in Israel were clustered different from those growing in Korea with the abundance of phenolic compounds (gallic, caffeic and protocathecuic acids), carotenoids (β-cryptoxanthin, lutein, and zeaxanthin), amino acids (alanine), maltose, uridine, and fatty acids (myristic and palmitoleic acids). Glucose, choline and formic acid were more prominent in persimmon growing in Korea. In CD3OD-D2O and CDCl3 persimmon extracts, 43 metabolites were identified. The metabolic differences were shown as well on the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. The presented methods can be widely used for quantitation of multiple compounds in many plant and biological samples especially in vegetables and fruits.
    Matched MeSH terms: Metabolomics*
  6. Tajidin NE, Shaari K, Maulidiani M, Salleh NS, Ketaren BR, Mohamad M
    Sci Rep, 2019 11 14;9(1):16766.
    PMID: 31727911 DOI: 10.1038/s41598-019-52905-z
    Andrographis paniculata (Burm. F.) Nees. is considered as the herb of the future due to its precious chemical compounds, andrographolide (ANDRO), neoandrographolide (NAG) and 14-deoxyandrographolide (DAG). This study aims to profile the metabolites in young and mature leaf at six different harvest ages using 1HNMR-based metabolomics combined with multivariate data analysis. Principal component analysis (PCA) indicated noticeable and clear discrimination between young and mature leaves. A comparison of the leaves stage indicated that young leaves were separated from mature leaves due to its larger quantity of ANDRO, NAG, DAG, glucose and sucrose. These similar metabolites are also responsible for the PCA separation into five clusters representing the harvest age at 14, 16, 18, 20, 22 weeks of leaves extract. Loading plots revealed that most of the ANDRO and NAG signals were present when the plant reached at the pre-flowering stage or 18 weeks after sowing (WAS). As a conclusion, A. paniculata young leaves at pre-flowering harvest age were found to be richer in ANDRO, NAG and DAG compared to mature leaves while glucose and choline increased with harvest age. Therefore, young leaves of A. paniculata should be harvested at 18 WAS in order to produce superior quality plant extracts for further applications by the herbal, nutraceutical and pharmaceutical industries.
    Matched MeSH terms: Metabolomics/methods*
  7. Wong C, Ling YS, Wee JLS, Mujahid A, Müller M
    Sci Rep, 2020 12 14;10(1):21861.
    PMID: 33318532 DOI: 10.1038/s41598-020-78873-3
    Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.
    Matched MeSH terms: Metabolomics*
  8. Ma NL, Aziz A, Teh KY, Lam SS, Cha TS
    Sci Rep, 2018 06 27;8(1):9746.
    PMID: 29950688 DOI: 10.1038/s41598-018-27894-0
    Nitrate is required to maintain the growth and metabolism of plant and animals. Nevertheless, in excess amount such as polluted water, its concentration can be harmful to living organisms such as microalgae. Recently, studies on microalgae response towards nutrient fluctuation are usually limited to lipid accumulation for the production of biofuels, disregarding the other potential of microalgae to be used in wastewater treatments and as source of important metabolites. Our study therefore captures the need to investigate overall metabolite changes via NMR spectroscopy approach coupled with multivariate data to understand the complex molecular process under high (4X) and low (1/4X) concentrations of nitrate ([Formula: see text]). NMR spectra with the aid of chemometric analysis revealed contrasting metabolites makeup under abundance and limited nitrate treatment. By using NMR technique, 43 types of metabolites and 8 types of fatty acid chains were detected. Nevertheless, only 20 key changes were observed and 16 were down regulated in limited nitrate condition. This paper has demonstrated the feasibility of NMR-based metabolomics approach to study the physiological impact of changing environment such as pollution to the implications for growth and productivity of microalgae population.
    Matched MeSH terms: Metabolomics
  9. Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF
    Sci Rep, 2018 01 23;8(1):1409.
    PMID: 29362474 DOI: 10.1038/s41598-018-19697-0
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value 
    Matched MeSH terms: Metabolomics/methods*
  10. Lim CK, Nurul Fadhilah Marzuki, Goh YK, You KG, Kah JG, Rafidah Ahmad, et al.
    Sains Malaysiana, 2018;47:3061-3068.
    Basal stem rot disease of oil palm caused by Ganoderma boninense is one of the most devastating diseases in oil palm
    plantation resulting in low yield, loss of palm stands and shorter replanting cycle. To-date, there is no effective treatment
    for Ganoderma infected palms. Control measures, either chemical or cultural approaches, show varying degrees of
    effectiveness. The application of biological control agents which is environmental-friendly could be an attractive solution
    to overcome the problem. Earlier, we had isolated a mycoparasite, Scytalidium parasiticum, from the basidiomata of
    Ganoderma boninense. In vitro assay and nursery experiment showed that this fungus could suppress Ganoderma infection
    and reduce disease severity. However, metabolites which might contribute to the antagonistic or mycoparasitic effect
    remain unknown. In the current study, optimization of fungal sample processing, extraction, and analytical procedures
    were conducted to obtain metabolites from the maize substrate colonized by mycoparasitic ascomycetous Scytalidium
    parasiticum. This technique capable of producing sexual spores in sac-like organs. Untargeted metabolomics profiling
    was carried out by using Liquid Chromatography Time of Flight Mass Spectrometry (LC-ToF-MS). We found that
    S. parasiticum in both liquid- and solid-state cultivation gave higher metabolite when extracted with 60% methanol with
    1% formic acid in combination with homogenisation methods such as ultrasonication and grinding. The findings from
    this study are useful for optimisation of metabolite extraction from other fungi-Ganoderma-plant interactions.
    Matched MeSH terms: Metabolomics
  11. Megat Mohd Azlan PI, Chin SF, Low TY, Neoh HM, Jamal R
    Proteomics, 2019 05;19(10):e1800176.
    PMID: 30557447 DOI: 10.1002/pmic.201800176
    Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
    Matched MeSH terms: Metabolomics
  12. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
    Matched MeSH terms: Metabolomics*
  13. Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE
    PLoS One, 2016;11(5):e0156318.
    PMID: 27232336 DOI: 10.1371/journal.pone.0156318
    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health monitoring and may provide insight into the progression of this and other insidious diseases.
    Matched MeSH terms: Metabolomics*
  14. Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z
    PLoS One, 2015;10(4):e0119654.
    PMID: 25849323 DOI: 10.1371/journal.pone.0119654
    Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.
    Matched MeSH terms: Metabolomics/methods*
  15. Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K
    PLoS One, 2020;15(9):e0238503.
    PMID: 32925968 DOI: 10.1371/journal.pone.0238503
    Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
    Matched MeSH terms: Metabolomics
  16. Loke MF, Chua EG, Gan HM, Thulasi K, Wanyiri JW, Thevambiga I, et al.
    PLoS One, 2018;13(12):e0208584.
    PMID: 30576312 DOI: 10.1371/journal.pone.0208584
    Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
    Matched MeSH terms: Metabolomics*
  17. Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK
    PLoS One, 2019;14(2):e0202457.
    PMID: 30735497 DOI: 10.1371/journal.pone.0202457
    The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.
    Matched MeSH terms: Metabolomics
  18. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
    Matched MeSH terms: Metabolomics
  19. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Metabolomics/methods
  20. Neik TX, Amas J, Barbetti M, Edwards D, Batley J
    Plants (Basel), 2020 Oct 10;9(10).
    PMID: 33050509 DOI: 10.3390/plants9101336
    Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
    Matched MeSH terms: Metabolomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links