Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Searchfield GD, Zhang J, Biswas R, De Ridder D, Deutsch B, Hall DA, et al.
    Curr Top Behav Neurosci, 2021;51:461-483.
    PMID: 33665781 DOI: 10.1007/7854_2020_217
    This volume has highlighted the many recent advances in tinnitus theory, models, diagnostics, therapies, and therapeutics. But tinnitus knowledge is far from complete. In this chapter, contributors to the Behavioral Neuroscience of Tinnitus consider emerging topics and areas of research needed in light of recent findings. New research avenues and methods to explore are discussed. Issues pertaining to current assessment, treatment, and research methods are outlined, along with recommendations on new avenues to explore with research.
    Matched MeSH terms: Neurosciences*
  2. Abrams MB, Bjaalie JG, Das S, Egan GF, Ghosh SS, Goscinski WJ, et al.
    Neuroinformatics, 2022 Jan;20(1):25-36.
    PMID: 33506383 DOI: 10.1007/s12021-020-09509-0
    There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.
    Matched MeSH terms: Neurosciences*
  3. Pavlov YG, Adamian N, Appelhoff S, Arvaneh M, Benwell CSY, Beste C, et al.
    Cortex, 2021 11;144:213-229.
    PMID: 33965167 DOI: 10.1016/j.cortex.2021.03.013
    There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.
    Matched MeSH terms: Neurosciences*
  4. Baharuddin A, Musa MN, Salleh SS
    Malays J Med Sci, 2016 Jan;23(1):1-3.
    PMID: 27540319 MyJurnal
    Muslim relies on the structure or guideline of shari'ah or the maqasid al-shariah, which consist of five essential values, namely preservation/protection of faith, life, intellect, property, and dignity/lineage - to guide them in discovering guiding principles for new concerns such as posed by neuroscience. Like in the case of brain imaging technology, there is in need for proper explanation within Islamic and among the Muslim scientists/scholars on how Islamic beliefs, values, and practices might cumulatively provide 'different' meanings to the practice and application of this technology, or whether it is in line with the shari'ah - in the context of preservation of health and protection of disease. This paper highlights the Islamic mechanism for neuroethics as basis for a holistic ethical framework of neuroscience to cope with its new, modern, and emerging technologies in the globalised world, and how Muslim should response to such changes.
    Matched MeSH terms: Neurosciences
  5. Tan EK, Albanese A, Chaudhuri KR, Opal P, Wu YC, Chan CH, et al.
    J Neurol Sci, 2020 11 15;418:117105.
    PMID: 32980781 DOI: 10.1016/j.jns.2020.117105
    Matched MeSH terms: Neurosciences/education*
  6. Balogun WG, Cobham AE, Amin A, Seeni A
    Metab Brain Dis, 2018 10;33(5):1431-1441.
    PMID: 29797116 DOI: 10.1007/s11011-018-0250-2
    Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
    Matched MeSH terms: Neurosciences/education*
  7. Maina MB, Ahmad U, Ibrahim HA, Hamidu SK, Nasr FE, Salihu AT, et al.
    Nat Commun, 2021 06 08;12(1):3429.
    PMID: 34103514 DOI: 10.1038/s41467-021-23784-8
    Neuroscience research in Africa remains sparse. Devising new policies to boost Africa's neuroscience landscape is imperative, but these must be based on accurate data on research outputs which is largely lacking. Such data must reflect the heterogeneity of research environments across the continent's 54 countries. Here, we analyse neuroscience publications affiliated with African institutions between 1996 and 2017. Of 12,326 PubMed indexed publications, 5,219 show clear evidence that the work was performed in Africa and led by African-based researchers - on average ~5 per country and year. From here, we extract information on journals and citations, funding, international coauthorships and techniques used. For reference, we also extract the same metrics from 220 randomly selected publications each from the UK, USA, Australia, Japan and Brazil. Our dataset provides insights into the current state of African neuroscience research in a global context.
    Matched MeSH terms: Neurosciences/economics; Neurosciences/trends*
  8. Balogun WG, Cobham AE, Amin A, Seeni A
    Neuroscience, 2018 03 15;374:323-325.
    PMID: 29427653 DOI: 10.1016/j.neuroscience.2018.01.062
    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.
    Matched MeSH terms: Neurosciences/economics; Neurosciences/methods*
  9. Kumar RS, Narayanan SN
    Adv Physiol Educ, 2008 Dec;32(4):329-31.
    PMID: 19047513 DOI: 10.1152/advan.90105.2008
    Matched MeSH terms: Neurosciences/education*
  10. Balogun WG, Cobham AE, Amin A
    Metab Brain Dis, 2018 04;33(2):359-368.
    PMID: 28993966 DOI: 10.1007/s11011-017-0119-9
    The science of the brain and nervous system cuts across almost all aspects of human life and is one of the fastest growing scientific fields worldwide. This necessitates the demand for pragmatic investment by all nations to ensure improved education and quality of research in Neurosciences. Although obvious efforts are being made in advancing the field in developed societies, there is limited data addressing the state of neuroscience in sub-Saharan Africa. Here, we review the state of neuroscience development in Nigeria, Africa's most populous country and its largest economy, critically evaluating the history, the current situation and future projections. This review specifically addresses trends in clinical and basic neuroscience research and education. We conclude by highlighting potentially helpful strategies that will catalyse development in neuroscience education and research in Nigeria, among which are an increase in research funding, provision of tools and equipment for training and research, and upgrading of the infrastructure at hand.
    Matched MeSH terms: Neurosciences/trends*
  11. Tumiran MA, Abdul Rahman NN, Mohd Saat R, Ismail AZ, Ruzali WAW, Bashar NKN, et al.
    J Relig Health, 2018 Feb;57(1):1-11.
    PMID: 26160145 DOI: 10.1007/s10943-015-0079-5
    Diseases involving the nervous system drastically change lives of victims and commonly increase dependency on others. This paper focuses on senile dementia from both the neuroscientific and Islamic perspectives, with special emphasis on the integration of ideas between the two different disciplines. This would enable effective implementation of strategies to address issues involving this disease across different cultures, especially among the world-wide Muslim communities. In addition, certain incongruence ideas on similar issues can be understood better. The former perspective is molded according to conventional modern science, while the latter on the analysis of various texts including the holy Qur'an, sunnah [sayings and actions of the Islamic prophet, Muhammad (pbuh)] and writings of Islamic scholars. Emphasis is particularly given on causes, symptoms, treatments and prevention of dementia.
    Matched MeSH terms: Neurosciences
  12. Lim, Kheng-Seang, Goh, Khean-Jin, Tan, Ai-Huey, Low, Soon-Chai, Mustapha Muzaimi
    MyJurnal
    The conjoint 17thAsian and Oceanian Myology Centre (AOMC) and 28thMalaysian Society of Neurosciences (MSN) Annual Scientific Meeting, held in Hotel Istana, Kuala Lumpur, Malaysia from 27 to 29 July 2018, was a great success to gather all neurosciences professionals locally and in the Asian-Oceanian region to share the latest updates in Neurology and specifically Myology. This congress attracted 516 local participants and 167 international delegates from 14 countries
    Matched MeSH terms: Neurosciences
  13. Abdullah JM
    Malays J Med Sci, 2019 May;26(3):1-23.
    PMID: 31303847 DOI: 10.21315/mjms2019.26.3.1
    The combined effort of the neuroscience and psychology cluster at the Universiti Sains Malaysia (USM)-fundamental, applied and clinical-has moved the institution to the number two position in the country, behind Universiti Malaya. The strategy to join the Global Brain Consortium (GBC) and put Malaysia on the map to address the GBC mission, vision, focus areas and outcomes began recently, in May 2019.
    Matched MeSH terms: Neurosciences
  14. Idris B, Sayuti S, Abdullah JM
    J Clin Neurosci, 2007 Feb;14(2):148-52.
    PMID: 17161289
    Universiti Sains Malaysia is the only institution in Malaysia which incorporates all fields of the neurosciences under one roof. The integration of basic and clinical neurosciences has made it possible for this institution to become an excellent academic and research centre. This article describes the history, academic contributions and scientific progress of neurosciences at Universiti Sains Malaysia.
    Matched MeSH terms: Neurosciences/history*
  15. Bonn GB
    Front Psychol, 2013;4:920.
    PMID: 24367349 DOI: 10.3389/fpsyg.2013.00920
    This paper examines the concept of free will, or independent action, in light of recent research in psychology and neuroscience. Reviewing findings in memory, prospection, and mental simulation, as well as the neurological mechanisms underlying behavioral control, planning, and integration, it is suggested in accord with previous arguments (e.g., Wegner, 2003; Harris, 2012) that a folk conception of free will as entirely conscious control over behavior should be rejected. However, it is argued that, when taken together, these findings can also support an alternative conception of free will. The constructive nature of memory and an integrative "default network" provide the means for novel and creative combinations of information, such as the imagining of counterfactual scenarios and alternative courses of action. Considering recent findings of extensive functional connections between these systems and those that subsume motor control and goal maintenance, it is argued that individuals have the capability of producing novel ideas and translating them into actionable goals. Although most of these processes take place beneath conscious awareness, it is argued that they are unique to the individual and thus, can be considered a form of independent control over behavior, or free will.
    Matched MeSH terms: Neurosciences
  16. Abdullah JM
    Malays J Med Sci, 2015 Dec;22(Spec Issue):1-4.
    PMID: 27006631
    12 months ago the first Neuroscience special issue of the Malaysia Journal of Medical Sciences was born with the intention to increase the number of local publication dedicated to neurosciences. Since then many events happened in the neuroscience world of Malaysia, those considered major were the establishment of a Neurotechnology Foresight 2050 task force by the Academy of Medicine Malaysia as well as the launching of Malaysia as the 18th member to join the International Neuroinformatics Coordinating Facility on the 9th October 2015 which was officiated by the Deputy Ministers of Higher Education, Datuk Mary Yap.
    Matched MeSH terms: Neurosciences
  17. Abdullah JM
    Malays J Med Sci, 2014 Dec;21(Spec Issue):1-5.
    PMID: 25941457
    The Malaysian Journal of Medical Sciences and the Orient Neuron Nexus have amalgated to publish a yearly special issue based on neuro- and brain sciences. This will hopefully improve the quality of peer-reviewed manuscripts in the field of fundamental, applied, and clinical neuroscience and brain science from Asian countries. One focus of the Universiti Sains Malaysia is to strengthen neuroscience and brain science, especially in the field of neuroinformatics.
    Matched MeSH terms: Neurosciences
  18. Abdullah JM
    Malays J Med Sci, 2013 May;20(3):1-5.
    PMID: 23966818
    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram's team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia's vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship.
    Matched MeSH terms: Neurosciences
  19. Abdullah JM
    Malays J Med Sci, 2018 Mar;25(2):1-14.
    PMID: 30918450 DOI: 10.21315/mjms2018.25.2.1
    People can work wonders without a room. Rooms make people think within a box, and people who are not confined within a room can wonder while thinking and solve problems as they see them in the environment. The dearth in the growth of professionals trained in the neurosciences who will use neurotechnology in the future is a dire situation facing Malaysia, according to the Academy of Sciences Malaysia's 2017 Emerging Science, Engineering and Technology (ESET) study. Further, this human resource needs to be fundamentally cultivated at schools from a very young age. The author describes the activities that have taken place in the country via a bottom-up approach over the last two years and hopes that eventually these endeavours will end with the creation of an ASEAN Brain, Mind, Behaviour and Neuroscience Institute for Creativity and Innovation being established with the full support of the Government of Malaysia or other local and international financial donors.
    Matched MeSH terms: Neurosciences
  20. Raffiq A, Abdullah JM, Haspani S, Adnan JS
    Malays J Med Sci, 2015 Dec;22(Spec Issue):5-8.
    PMID: 27006632 MyJurnal
    The development of neurosurgical services and training in Malaysia began in 1963, with the first centre established in its capital city at Hospital Kuala Lumpur, aimed to provide much needed neurosurgical services and training in the field of neurology and neurosurgery. This center subsequently expanded in 1975 with the establishment of the Tunku Abdul Rahman Neuroscience Institute (IKTAR); which integrated the three allied interdependent disciplines of neurosurgery, neurology and psychiatry. The establishment of this institute catalysed the rapid expansion of neurosurgical services in Malaysia and paved the way for development of comprehensive training for doctors, nurses, and paramedics. This culminated in the establishments of a local comprehensive neurosurgery training program for doctors in 2001; followed by a training program for nurses and paramedics in 2006. To date, there are more than 60 neurosurgeons providing expert care in 11 centers across Malaysia, along with trained personnel in the field of neurosciences.
    Matched MeSH terms: Neurosciences
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links