Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Cook GM, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, et al.
    Elife, 2020 05 28;9.
    PMID: 32452761 DOI: 10.7554/eLife.54612
    Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.
    Matched MeSH terms: Neurosciences
  2. Raffiq A, Abdullah JM, Haspani S, Adnan JS
    Malays J Med Sci, 2015 Dec;22(Spec Issue):5-8.
    PMID: 27006632 MyJurnal
    The development of neurosurgical services and training in Malaysia began in 1963, with the first centre established in its capital city at Hospital Kuala Lumpur, aimed to provide much needed neurosurgical services and training in the field of neurology and neurosurgery. This center subsequently expanded in 1975 with the establishment of the Tunku Abdul Rahman Neuroscience Institute (IKTAR); which integrated the three allied interdependent disciplines of neurosurgery, neurology and psychiatry. The establishment of this institute catalysed the rapid expansion of neurosurgical services in Malaysia and paved the way for development of comprehensive training for doctors, nurses, and paramedics. This culminated in the establishments of a local comprehensive neurosurgery training program for doctors in 2001; followed by a training program for nurses and paramedics in 2006. To date, there are more than 60 neurosurgeons providing expert care in 11 centers across Malaysia, along with trained personnel in the field of neurosciences.
    Matched MeSH terms: Neurosciences
  3. Abdullah JM
    Malays J Med Sci, 2015 Dec;22(Spec Issue):1-4.
    PMID: 27006631
    12 months ago the first Neuroscience special issue of the Malaysia Journal of Medical Sciences was born with the intention to increase the number of local publication dedicated to neurosciences. Since then many events happened in the neuroscience world of Malaysia, those considered major were the establishment of a Neurotechnology Foresight 2050 task force by the Academy of Medicine Malaysia as well as the launching of Malaysia as the 18th member to join the International Neuroinformatics Coordinating Facility on the 9th October 2015 which was officiated by the Deputy Ministers of Higher Education, Datuk Mary Yap.
    Matched MeSH terms: Neurosciences
  4. Mohd Ibrahim SD, Muda M
    Malays J Med Sci, 2015 Jul-Aug;22(4):64-8.
    PMID: 26715909 MyJurnal
    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a 'school-based Neuroscience Club' via the 'Knowledge Transfer Programme (KTP) - Community' project. This community project was known as "The Brain Apprentice Project". The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the "My Brain Invention Competition", "Mini Brain Bee Contest", "Recycled Melody" and "Brain Dissection". These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the "International Brain Bee", was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school's cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club's activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of Education examinations improved tremendously.
    Matched MeSH terms: Neurosciences
  5. Baharuddin A, Musa MN, Salleh SS
    Malays J Med Sci, 2016 Jan;23(1):1-3.
    PMID: 27540319 MyJurnal
    Muslim relies on the structure or guideline of shari'ah or the maqasid al-shariah, which consist of five essential values, namely preservation/protection of faith, life, intellect, property, and dignity/lineage - to guide them in discovering guiding principles for new concerns such as posed by neuroscience. Like in the case of brain imaging technology, there is in need for proper explanation within Islamic and among the Muslim scientists/scholars on how Islamic beliefs, values, and practices might cumulatively provide 'different' meanings to the practice and application of this technology, or whether it is in line with the shari'ah - in the context of preservation of health and protection of disease. This paper highlights the Islamic mechanism for neuroethics as basis for a holistic ethical framework of neuroscience to cope with its new, modern, and emerging technologies in the globalised world, and how Muslim should response to such changes.
    Matched MeSH terms: Neurosciences
  6. Abdullah JM
    Malays J Med Sci, 2014 Dec;21(Spec Issue):1-5.
    PMID: 25941457
    The Malaysian Journal of Medical Sciences and the Orient Neuron Nexus have amalgated to publish a yearly special issue based on neuro- and brain sciences. This will hopefully improve the quality of peer-reviewed manuscripts in the field of fundamental, applied, and clinical neuroscience and brain science from Asian countries. One focus of the Universiti Sains Malaysia is to strengthen neuroscience and brain science, especially in the field of neuroinformatics.
    Matched MeSH terms: Neurosciences
  7. Abdullah JM
    Malays J Med Sci, 2013 May;20(3):1-5.
    PMID: 23966818
    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram's team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia's vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship.
    Matched MeSH terms: Neurosciences
  8. Abdullah JM
    Malays J Med Sci, 2019 May;26(3):1-23.
    PMID: 31303847 DOI: 10.21315/mjms2019.26.3.1
    The combined effort of the neuroscience and psychology cluster at the Universiti Sains Malaysia (USM)-fundamental, applied and clinical-has moved the institution to the number two position in the country, behind Universiti Malaya. The strategy to join the Global Brain Consortium (GBC) and put Malaysia on the map to address the GBC mission, vision, focus areas and outcomes began recently, in May 2019.
    Matched MeSH terms: Neurosciences
  9. Abdullah JM
    Malays J Med Sci, 2018 Mar;25(2):1-14.
    PMID: 30918450 DOI: 10.21315/mjms2018.25.2.1
    People can work wonders without a room. Rooms make people think within a box, and people who are not confined within a room can wonder while thinking and solve problems as they see them in the environment. The dearth in the growth of professionals trained in the neurosciences who will use neurotechnology in the future is a dire situation facing Malaysia, according to the Academy of Sciences Malaysia's 2017 Emerging Science, Engineering and Technology (ESET) study. Further, this human resource needs to be fundamentally cultivated at schools from a very young age. The author describes the activities that have taken place in the country via a bottom-up approach over the last two years and hopes that eventually these endeavours will end with the creation of an ASEAN Brain, Mind, Behaviour and Neuroscience Institute for Creativity and Innovation being established with the full support of the Government of Malaysia or other local and international financial donors.
    Matched MeSH terms: Neurosciences
  10. Lim, Kheng-Seang, Goh, Khean-Jin, Tan, Ai-Huey, Low, Soon-Chai, Mustapha Muzaimi
    MyJurnal
    The conjoint 17thAsian and Oceanian Myology Centre (AOMC) and 28thMalaysian Society of Neurosciences (MSN) Annual Scientific Meeting, held in Hotel Istana, Kuala Lumpur, Malaysia from 27 to 29 July 2018, was a great success to gather all neurosciences professionals locally and in the Asian-Oceanian region to share the latest updates in Neurology and specifically Myology. This congress attracted 516 local participants and 167 international delegates from 14 countries
    Matched MeSH terms: Neurosciences
  11. Balogun WG, Cobham AE, Amin A, Seeni A
    Neuroscience, 2018 03 15;374:323-325.
    PMID: 29427653 DOI: 10.1016/j.neuroscience.2018.01.062
    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.
    Matched MeSH terms: Neurosciences/economics; Neurosciences/methods*
  12. Abrams MB, Bjaalie JG, Das S, Egan GF, Ghosh SS, Goscinski WJ, et al.
    Neuroinformatics, 2022 Jan;20(1):25-36.
    PMID: 33506383 DOI: 10.1007/s12021-020-09509-0
    There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.
    Matched MeSH terms: Neurosciences*
  13. Kasabov N, Scott NM, Tu E, Marks S, Sengupta N, Capecci E, et al.
    Neural Netw, 2016 Jun;78:1-14.
    PMID: 26576468 DOI: 10.1016/j.neunet.2015.09.011
    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include 'on the fly' new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this is presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM.
    Matched MeSH terms: Neurosciences
  14. Maina MB, Ahmad U, Ibrahim HA, Hamidu SK, Nasr FE, Salihu AT, et al.
    Nat Commun, 2021 06 08;12(1):3429.
    PMID: 34103514 DOI: 10.1038/s41467-021-23784-8
    Neuroscience research in Africa remains sparse. Devising new policies to boost Africa's neuroscience landscape is imperative, but these must be based on accurate data on research outputs which is largely lacking. Such data must reflect the heterogeneity of research environments across the continent's 54 countries. Here, we analyse neuroscience publications affiliated with African institutions between 1996 and 2017. Of 12,326 PubMed indexed publications, 5,219 show clear evidence that the work was performed in Africa and led by African-based researchers - on average ~5 per country and year. From here, we extract information on journals and citations, funding, international coauthorships and techniques used. For reference, we also extract the same metrics from 220 randomly selected publications each from the UK, USA, Australia, Japan and Brazil. Our dataset provides insights into the current state of African neuroscience research in a global context.
    Matched MeSH terms: Neurosciences/economics; Neurosciences/trends*
  15. Cyranoski D
    Nature, 2005 Aug 11;436(7052):884-5.
    PMID: 16136648
    Matched MeSH terms: Neurosciences/trends
  16. Balogun WG, Cobham AE, Amin A, Seeni A
    Metab Brain Dis, 2018 10;33(5):1431-1441.
    PMID: 29797116 DOI: 10.1007/s11011-018-0250-2
    Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
    Matched MeSH terms: Neurosciences/education*
  17. Balogun WG, Cobham AE, Amin A
    Metab Brain Dis, 2018 04;33(2):359-368.
    PMID: 28993966 DOI: 10.1007/s11011-017-0119-9
    The science of the brain and nervous system cuts across almost all aspects of human life and is one of the fastest growing scientific fields worldwide. This necessitates the demand for pragmatic investment by all nations to ensure improved education and quality of research in Neurosciences. Although obvious efforts are being made in advancing the field in developed societies, there is limited data addressing the state of neuroscience in sub-Saharan Africa. Here, we review the state of neuroscience development in Nigeria, Africa's most populous country and its largest economy, critically evaluating the history, the current situation and future projections. This review specifically addresses trends in clinical and basic neuroscience research and education. We conclude by highlighting potentially helpful strategies that will catalyse development in neuroscience education and research in Nigeria, among which are an increase in research funding, provision of tools and equipment for training and research, and upgrading of the infrastructure at hand.
    Matched MeSH terms: Neurosciences/trends*
  18. Manveen, K.
    MyJurnal
    Depression is usually discussed as an adult problem; however there is a need to recognize it being a significant problem for children. Rarely is depression focused on how it affects parenting and child outcomes, particularly for young children.Often women are victims of violence, and the devastating effects of depression are significant in such households. However one must not ignore, the effect depression has on parenting, where in these contexts, women themselves, become the perpetrators of violence. When mothers are not well-2 central parental functions are threatened: the ability to foster healthy relationships and to carry out the practical functions of parenting2.When this is not carried out, one sees obvious reductions in young children’s behavioral, cognitive, and social and emotional functioning. Neuroscience is clearly evident that the primary ingredient for healthy early brain development is the quality of the earliest relationships from a baby’s primary caregiver.
    Matched MeSH terms: Neurosciences
  19. Aishah Mohammed Izham, Min, Jasmine Chia Siew, Vidyadaran, Sharmili, Mohd Roslan Sulaiman, Hemabarathy, Bharatham B., Perimal, Enoch Kumar
    MyJurnal
    The human neuroblastoma cell line, SH-SY5Y cells, derived from the parental SK-N-SH cell line, is commonly used as an in vitro model for neuroscience and neurobiology research. Since SH-SY5Y cells are widely cultured for research, several different culture media have been used to optimize the growth of the cells, including Eagle's Minimum Essential Medium (EMEM), Dulbecco’s modified Eagle’s medium (DMEM) and other recently developed culture media. SH-SY5Y cells has the ability to reach confluency in culture flasks ranges from 5 days to 15 days, depending on the culture media used. Hence, the optimization of the culture media is crucial to achieve the fastest growth rate for the cells. The objective of the study is to evaluate the culture media for the proliferation of SH-SY5Y cells. We compared the growth rate of SH-SY5Y cells cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% heat-inactivated fetal bovine serum (hiFBS), Dulbecco’s modified Eagle’s medium: Nutrient mixture F-12 (DMEM:F12) + supplemented with 15% hiFBS and DMEM:F12 supplemented with 10% hiFBS. In DMEM:F12 supplemented with 15% hiFBS, cells grew up to 6.67E+05 cells. In DMEM:F12 supplemented with 10% hiFBS, cells grew up to 5.28E+05 cells. In DMEM supplemented with 15% hiFBS, the cells grew up to 4.76E+05 cells. There was a significant difference between culture media DMEM:F12 supplemented with 15% hiFBS as compared to DMEM:F12 supplemented with 10%hiFBS and DMEM supplemented with 15% hiFBS (p0.05). We found that DMEM:F12 supplemented with 15% hiFBS could serve as an optimized culture media for high proliferation rate of SH-SY5Y cells.
    Matched MeSH terms: Neurosciences
  20. Tan EK, Albanese A, Chaudhuri KR, Opal P, Wu YC, Chan CH, et al.
    J Neurol Sci, 2020 11 15;418:117105.
    PMID: 32980781 DOI: 10.1016/j.jns.2020.117105
    Matched MeSH terms: Neurosciences/education*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links