Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  2. Kong BH, Hanifah YA, Yusof MY, Thong KL
    Trop Biomed, 2011 Dec;28(3):563-8.
    PMID: 22433885 MyJurnal
    Acinetobacter baumannii, genomic species 3 and 13TU are being increasingly reported as the most important Acinetobacter species that cause infections in hospitalized patients. These Acinetobacter species are grouped in the Acinetobacter calcoaceticus- Acinetobacter baumannii (Acb) complex. Differentiation of the species in the Acb-complex is limited by phenotypic methods. Therefore, in this study, amplified ribosomal DNA restriction analysis (ARDRA) was applied to confirm the identity A. baumannii strains as well as to differentiate between the subspecies. One hundred and eighty-five strains from Intensive Care Unit, Universiti Malaya Medical Center (UMMC) were successfully identified as A. baumannii by ARDRA. Acinetobacter genomic species 13TU and 15TU were identified in 3 and 1 strains, respectively. ARDRA provides an accurate, rapid and definitive approach towards the identification of the species level in the genus Acinetobacter. This paper reports the first application ARDRA in genospecies identification of Acinetobacter in Malaysia.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  3. Yaseen SG, Ahmed SA, Johan MF, Kiron R, Daher AM
    Transfus. Apher. Sci., 2013 Dec;49(3):647-51.
    PMID: 23890575 DOI: 10.1016/j.transci.2013.07.003
    Transmission of infectious diseases is a recognized complication of blood transfusion and blood products. Nucleic acid testing (NAT) may contribute to improved efficiency of blood screening and thereby increase the safety margin for transfused blood.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/instrumentation; Nucleic Acid Amplification Techniques/methods*
  4. Teh CS, Chua KH, Lim YA, Lee SC, Thong KL
    ScientificWorldJournal, 2014;2014:457839.
    PMID: 24967435 DOI: 10.1155/2014/457839
    We have successfully developed a Loop-mediated isothermal amplification (LAMP) assay that could specifically detect generic Escherichia coli (E. coli). This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26). The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 10(2) CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 10(3) CFU/mL (Tt = 31.12). We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC) positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  5. Tan NH, Palmer R, Wang R
    J. Obstet. Gynaecol. Res., 2010 Feb;36(1):19-26.
    PMID: 20178523 DOI: 10.1111/j.1447-0756.2009.01110.x
    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  6. Isa MN, Sulong S, Sidek MR, George PJ, Abdullah JM
    PMID: 15115103
    Telomerase, the enzyme that stabilizes telomere length is reactivated with almost all cancer types, and may be a useful diagnostic marker for malignancy. Telomerase activity has been detected in germ line cells and most cancer cells, whereas most normal somatic cells have no clearly detectable telomerase activity. In our study, we aim to detect telomerase activity in 20 human central nervous system tumors from Malaysian patients. Telomerase activity was detected based on a highly sensitive procedure consisting of a CHAPS detergent-based extraction from frozen tissues and a PCR-based telomeric repeat amplification protocol (TRAP) using a TRAPEZE Telomerase Detection Kit (Intergen, Co). Telomerase activity was considered positive when a ladder of products was observed starting at 50bp, with 6bp increments. The activity was detected in 30% of the samples analysed, included glioblastoma multiforme, meduloblastoma, paraganglioma and oligodendroglioma. The result of Fisher's exact test indicated that there was a significant association between telomerase activity status with tumor grade (p=0.003). These results suggest that telomerase activity may be an important marker for tumor malignancy.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  7. Wee YC, Tan KL, Tan PC, Yap SF, Tan JAMA
    Med. J. Malaysia, 2005 Oct;60(4):447-53.
    PMID: 16570706
    Haemoglobin Bart's hydrops foetalis syndrome (--SEA/--SEA) is not compatible with life and contributes to a majority of the hydropic foetuses in the Malaysian Chinese alpha-thalassaemia carriers who possess the 2-alpha-gene deletion in cis (--SEA/alphaalpha). A duplex-PCR which simultaneously amplifies a normal 136 bp sequence between the psialpha-alpha2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (--SEA) between the psialpha2-theta1-globin genes was established. The duplex-PCR which detects the --SEA deletion in both chromosomes serves as a rapid and cost-effective confirmatory test in the antenatal diagnosis of Haemoglobin Bart's hydrops foetalis syndrome in Malaysia. In addition, the duplex-PCR is simple to perform as both the normal and deletion-specific alpha-globin gene sequences are amplified in the same PCR reaction.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  8. Hamidah NH, Munirah AR, Hafiza A, Farisah AR, Shuhaila A, Norzilawati MN, et al.
    Malays J Pathol, 2014 Dec;36(3):163-8.
    PMID: 25500514 MyJurnal
    Prenatal diagnosis is essential in the new era of diagnosis and management of genetic diseases in obstetrics. Multiple ligation-dependent probe amplification (MLPA) is a recent technique for prenatal diagnosis for the relative quantification of 40 different nucleic acid sequences in one single reaction. We had utilized the MLPA technique in detecting aneuploidies in amniotic fluid samples from 25 pregnant women from the Obstetrics and Gynaecology Department UKMMC, versus the quantitative fluorescent polymerase chain reaction (QF-PCR) method. Conclusive results were obtained in 18 cases and all were concordant with that of the QF-PCR. All four cases of trisomies were correctly identified including one case with maternal cell contamination.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  9. Hafiza A, Noor HH, Noor FA, Azlin I, Ainoon O
    Malays J Pathol, 2010 Dec;32(2):137-41.
    PMID: 21329186 MyJurnal
    Sickle cell disease (SCD) is an inherited red cell disorder, characterized by the tendency of haemoglobin S or sickle haemoglobin to polymerize and assume a characteristic sickle shape. Molecular analysis has been the mainstay of detection method when confirmation is required. Previously a polymerase chain reaction (PCR)-based restriction enzyme analysis was used for this purpose. A simple bidirectional allele-specific amplification, recently described by Waterfall in 2001 was used to detect the GAG --> GTG mutation on codon 6 of the beta globin gene. Two sets of primers for the mutant and the wild type alleles were used in a single PCR reaction to amplify the regions of interest. The resultant PCR products will produce two fragments at 517 and 267 base pair (bp) respectively. This report highlights the investigations for SCD in the family of a 16-year old girl with recurrent painful crisis affecting the lower limbs whereby the family members are asymptomatic for the disease. Her haemoglobin electrophoresis at an alkaline pH showed dense bands at the HbS and HbF regions, while her father and two sisters had bands at HbS, HbF and HbA. The PCR analysis showed that she was homozygous for the mutation by the presence of only one band at 267 bp fragment, while the father and her sisters were heterozygotes, with the presence of two bands at 267 as well as 517 bp fragments. DNA sequencing of the sample confirmed the mutation. In conclusion, this case report highlighted the simple and cheap yet practical method for molecular confirmation of the presence of HbS gene in subjects with homozygous or heterozygous state of the condition.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  10. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  11. Michelle Wong Tzeling J, Yean Yean C
    Analyst, 2016 Feb 21;141(4):1246-9.
    PMID: 26783560 DOI: 10.1039/c5an01741f
    A shelf-stable loop-mediated isothermal amplification (LAMP) reagent for Burkholderia pseudomallei detection is described. The coupling of LAMP reagents with the indirect colorimetric indicator and consequently its lyophilization enable the simple evaluation of results without the need for any advance laboratory instruments. The reagents were found to have a stable shelf life of at least 30 days with well-maintained sensitivity and specificity.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  12. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am. J. Trop. Med. Hyg., 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  13. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am. J. Trop. Med. Hyg., 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  14. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2017 Nov;97(5):1597-1599.
    PMID: 28820700 DOI: 10.4269/ajtmh.17-0427
    In this study, we developed a recombinase polymerase amplification (RPA) assay for specific diagnosis of Plasmodium knowlesi. Genomic DNA was extracted from whole blood samples using a commercial kit. With incubation at 37°C, the samples were successfully amplified within 20 minutes. The end product of RPA was further examined by loading onto agarose gel and a specific band was observed with a size of 128 bp. The RPA assay exhibited high sensitivity with limits of detection down to one copy of the plasmid. From the specificity experiments, it was demonstrated that all P. knowlesi samples (N = 45) were positive while other Plasmodium spp. (N = 42) and negative samples (N = 6) were negative. Therefore, the RPA assay is a highly promising approach with the potential to be used in resource-limited settings. This assay can be further optimized for bedside and on field application.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  15. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  16. Mallepaddi PC, Lai MY, Podha S, Ooi CH, Liew JW, Polavarapu R, et al.
    Am. J. Trop. Med. Hyg., 2018 09;99(3):704-708.
    PMID: 29943720 DOI: 10.4269/ajtmh.18-0177
    The present study aims to develop a method for rapid diagnosis of malaria using loop-mediated isothermal amplification (LAMP) combined with a lateral flow device (LFD). By adding the biotin-labeled and fluorescein amidite-labeled loop primers to the LAMP reaction solution, the end product can be visualized on a LFD. The entire procedure takes approximately 42 minutes to complete, LAMP assay exhibited high sensitivity, as the detection limit was 0.01 pg/μL for all five Plasmodium species. It was demonstrated that all Plasmodium knowlesi (N = 90) and Plasmodium vivax (N = 56) were positively amplified by LAMP-LFD assay, whereas healthy donor samples (N = 8) were negative. However, not all mixed infections were positive, and other infected nonmalaria samples were negative. Loop-mediated isothermal amplification-LFD represents a robust approach with potential suitability for use in resource-constrained laboratories. We believe that LAMP-LFD has a potential to be developed as point-of-care diagnostic tool in future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  17. Gaydos CA, Ngeow YF, Lee HH, Canavaggio M, Welsh LE, Johanson J, et al.
    Sex Transm Dis, 1996 9 1;23(5):402-6.
    PMID: 8885072
    BACKGROUND AND OBJECTIVES: Noninvasive urine screening for Chlamydia trachomatis infections offers a valuable public health tool, which could be of vast importance in chlamydial control programs. The authors evaluated a new DNA amplification method, ligase chain reaction (LCR).

    GOALS: The goal was to ascertain whether urine testing could be used as screening method to detect C. trachomatis infections in commercial sex workers, patients at sexually transmitted diseases clinic, and asymptomatic patients in Kuala Lumpur, Malaysia.

    METHODS: First-void urine specimens from 300 men and 300 women were tested by LCR, as well as by a commercially available enzyme immunoassay. The LCR assay amplifies specific sequences within the chlamydial plasmid with ligand-labeled probes, and the resultant amplicons are detected by an automated immunoassay. Specimens with discrepant results were confirmed by another LCR of the specimen that targeted the gene for the major outer membrane protein (OMP1).

    RESULTS: There were 31 LCR-positive male urine and 37 LCR-positive female urine specimens. The resolved sensitivity and specificity for the LCR of the male urine specimens were 100% and 99.6%, respectively, whereas for female urine specimens, the sensitivity and specificity were 100% and 98.5%, respectively. After resolution of discrepant test results by OMP1 LCR, the prevalence was 10% for men and 11% for women. The urine enzyme immunoassay was not useful in diagnosing C. trachomatis infections in either men or women, as the resolved sensitivities were 10% and 15.2%, respectively. The specificities were 99.6% for men and 98.9% for women.

    CONCLUSIONS: Testing first-void urine specimens by LCR is a highly sensitive and specific method to diagnose C. trachomatis infections in men and women, providing health care workers and public health officials with a new molecular amplification assay that uses noninvasive urine specimens for population-based screening purposes.

    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  18. Lee DJ, Kim SY, Kim JD, Kim YS, Song HJ, Park CY
    Sains Malaysiana, 2015;44:1693-1699.
    This paper presents a low-cost method of constructing the compact UV illuminator, which is considered as an important
    component of a gel documentation system. The procedure involves using a smallest-possible UV lamp and a motor which
    moves the UV lamp in the UV illuminator instead of conventional 4 UV lamps. A comparative analysis of images produced
    by using the commercial gel documentation system and our prototype was carried out. These comparisons were done
    in real DNA gel as well as a reference plate made of quantum dot. The plate was composed of the chambers filled with
    various densities of the quantum dot instead of the Agarose gel containing the ETBR in order to increase the accuracy of
    comparison and the convenience of experiments. Despite the use of only 1 UV lamp, the proposed system demonstrated
    a similar imaging performance compared with the conventional gel documentation system equipped with 4 UV lamps,
    resulting in the great reduction of the system cost.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  19. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  20. Lau YL, Lai MY, Teoh BT, Abd-Jamil J, Johari J, Sam SS, et al.
    PLoS ONE, 2015;10(9):e0138694.
    PMID: 26384248 DOI: 10.1371/journal.pone.0138694
    Dengue is usually diagnosed by isolation of the virus, serology or molecular diagnostic methods. Several commercial kits for the diagnosis of dengue are existing, but concerns have arisen regarding to the affordability and performance characteristics of these kits. Hence, the loop-mediated isothermal amplification (LAMP) is potentially ideal to be used especially in resource limited environments. Serum was collected from healthy donors and patients diagnosed with dengue infection. RNA extracted from the serum samples were tested by reverse-transcription-LAMP assay developed based on 3'-NCR gene sequences for DENV 1-4. Results were interpreted by a turbidity meter in real time or visually at the end of the assay. Sensitivity and specificity of RT-LAMP results were calculated and compared to qRT-PCR and ELISA. RT-LAMP is highly sensitive with the detection limit of 10 RNA copies for all serotypes. Dengue virus RNA was detected in all positive samples using RT-LAMP and none of the negative samples within 30-45 minutes. With continuing efforts in the optimization of this assay, RT-LAMP may provide a simple and reliable test for detecting DENV in areas where dengue is prevalent.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links