Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J. Virol. Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  2. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  3. Michelle Wong Tzeling J, Yean Yean C
    Analyst, 2016 Feb 21;141(4):1246-9.
    PMID: 26783560 DOI: 10.1039/c5an01741f
    A shelf-stable loop-mediated isothermal amplification (LAMP) reagent for Burkholderia pseudomallei detection is described. The coupling of LAMP reagents with the indirect colorimetric indicator and consequently its lyophilization enable the simple evaluation of results without the need for any advance laboratory instruments. The reagents were found to have a stable shelf life of at least 30 days with well-maintained sensitivity and specificity.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  4. Engku Nur Syafirah EAR, Nurul Najian AB, Foo PC, Mohd Ali MR, Mohamed M, Yean CY
    Acta Trop., 2018 Jun;182:223-231.
    PMID: 29545156 DOI: 10.1016/j.actatropica.2018.03.004
    Cholera, caused by Vibrio cholerae is a foodborne disease that frequently reported in food and water related outbreak. Rapid diagnosis of cholera infection is important to avoid potential spread of disease. Among available diagnostic platforms, loop-mediated isothermal amplification (LAMP) is regarded as a potential diagnostic tool due to its rapidity, high sensitivity and specificity and independent of sophisticated thermalcycler. However, the current LAMP often requires multiple pipetting steps, hence is susceptible to cross contamination. Besides, the strict requirement of cold-chain during transportation and storage make its application in low resource settings to be inconvenient. To overcome these problems, the present study is aimed to develop an ambient-temperature-stable and ready-to-use LAMP assay for the detection of toxigenic Vibrio cholerae in low resource settings. A set of specific LAMP primers were designed and tested against 155 V. cholerae and non-V. cholerae strains. Analytical specifity showed that the developed LAMP assay detected 100% of pathogenic V. cholerae and did not amplified other tested bacterial strains. Upon testing against stool samples spiked with toxigenic V. cholerae outbreak isolates, the LAMP assay detected all of the spiked samples (n = 76/76, 100%), in contrast to the conventional PCR which amplified 77.6% (n = 59/76) of the tested specimens. In term of sensitivity, the LAMP assay was 100-fold more sensitive as compared to the conventional PCR method, with LOD of 10 fg per μL and 10 CFU per mL. Following lyophilisation with addition of lyoprotectants, the dry-reagent LAMP mix has an estimated shelf-life of 90.75 days at room temperature.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  5. Nurul Najian AB, Foo PC, Ismail N, Kim-Fatt L, Yean CY
    Mol. Cell. Probes, 2019 04;44:63-68.
    PMID: 30876924 DOI: 10.1016/j.mcp.2019.03.001
    This study highlighted the performance of the developed integrated loop-mediated isothermal amplification (LAMP) coupled with a colorimetric DNA-based magnetogenosensor. The biosensor operates through a DNA hybridization system in which a specific designed probe captures the target LAMP amplicons. We demonstrated the magnetogenosensor assay by detecting pathogenic Leptospira, which causes leptospirosis. The color change of the assay from brown to blue indicated a positive result, whereas a negative result was indicated by the assay maintaining its brown color. The DNA biosensor was able to detect DNA at a concentration as low as 200 fg/μl, which is equivalent to 80 genomes/reaction. The specificity of the biosensor assay was 100% when it was evaluated with 172 bacterial strains. An integrated LAMP and probe-specific magnetogenosensor was successfully developed, promising simple and rapid visual detection in clinical diagnostics and service as a point-of-care device.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  6. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal. Chem., 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  7. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  8. Tan NH, Palmer R, Wang R
    J. Obstet. Gynaecol. Res., 2010 Feb;36(1):19-26.
    PMID: 20178523 DOI: 10.1111/j.1447-0756.2009.01110.x
    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  9. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J. Virol. Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  10. Lim KT, Teh CS, Thong KL
    Biomed Res Int, 2013;2013:895816.
    PMID: 23509796 DOI: 10.1155/2013/895816
    Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is an important human pathogen that produces a variety of toxins and causes a wide range of infections, including soft-tissue infections, bacteremia, and staphylococcal food poisoning. A loop-mediated isothermal amplification (LAMP) assay targeting the arcC gene of S. aureus was developed and evaluated with 119 S. aureus and 25 non-S. aureus strains. The usefulness of the assay was compared with the PCR method that targets spa and arcC genes. The optimal temperature for the LAMP assay was 58.5°C with a detection limit of 2.5 ng/μL and 10(2) CFU/mL when compared to 12.5 ng/μL and 10(3) CFU/mL for PCR (spa and arcC). Both LAMP and PCR assays were 100% specific, 100% sensitive, 100% positive predictive value (PPV), and 100% negative predictive value (NPV). When tested on 30 spiked blood specimens (21 MRSA, eight non-S. aureus and one negative control), the performance of LAMP and PCR was comparable: 100% specific, 100% sensitive, 100% PPV, and 100% NPV. In conclusion, the LAMP assay was equally specific with a shorter detection time when compared to PCR in the identification of S. aureus. The LAMP assay is a promising alternative method for the rapid identification of S. aureus and could be used in resource-limited laboratories and fields.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  11. Kong BH, Hanifah YA, Yusof MY, Thong KL
    Trop Biomed, 2011 Dec;28(3):563-8.
    PMID: 22433885 MyJurnal
    Acinetobacter baumannii, genomic species 3 and 13TU are being increasingly reported as the most important Acinetobacter species that cause infections in hospitalized patients. These Acinetobacter species are grouped in the Acinetobacter calcoaceticus- Acinetobacter baumannii (Acb) complex. Differentiation of the species in the Acb-complex is limited by phenotypic methods. Therefore, in this study, amplified ribosomal DNA restriction analysis (ARDRA) was applied to confirm the identity A. baumannii strains as well as to differentiate between the subspecies. One hundred and eighty-five strains from Intensive Care Unit, Universiti Malaya Medical Center (UMMC) were successfully identified as A. baumannii by ARDRA. Acinetobacter genomic species 13TU and 15TU were identified in 3 and 1 strains, respectively. ARDRA provides an accurate, rapid and definitive approach towards the identification of the species level in the genus Acinetobacter. This paper reports the first application ARDRA in genospecies identification of Acinetobacter in Malaysia.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  12. Teh CS, Chua KH, Lim YA, Lee SC, Thong KL
    ScientificWorldJournal, 2014;2014:457839.
    PMID: 24967435 DOI: 10.1155/2014/457839
    We have successfully developed a Loop-mediated isothermal amplification (LAMP) assay that could specifically detect generic Escherichia coli (E. coli). This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26). The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 10(2) CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 10(3) CFU/mL (Tt = 31.12). We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC) positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  13. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  14. Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL
    Biosens Bioelectron, 2018 Feb 15;100:96-104.
    PMID: 28869845 DOI: 10.1016/j.bios.2017.08.060
    Outbreaks of foodborne diseases have become a global health concern; hence, many improvements and developments have been made to reduce the risk of food contamination. We developed a centrifugal microfluidic automatic wireless endpoint detection system integrated with loop mediated isothermal amplification (LAMP) for monoplex pathogen detection. Six identical sets were designed on the microfluidic compact disc (CD) to perform 30 genetic analyses of three different species of foodborne pathogens. The consecutive loading, mixing, and aliquoting of the LAMP primers/reagents and DNA sample solutions were accomplished using an optimized square-wave microchannel, metering chambers and revulsion per minute (RPM) control. We tested 24 strains of pathogenic bacteria (Escherichia coli, Salmonella spp and Vibrio cholerae), with 8 strains of each bacterium, and performed DNA amplification on the microfluidic CD for 60min. Then, the amplicons of the LAMP reaction were detected using the calcein colorimetric method and further analysed via the developed electronic system interfaced with Bluetooth wireless technology to transmit the results to a smartphone. The system showed a limit of detection (LOD) of 3 × 10-5ngμL-1 DNA by analysing the colour change when tested with chicken meat spiked with the three pathogenic bacteria. Since the entire process was performed in a fully automated way and was easy to use, our microdevice is suitable for point-of-care (POC) testing with high simplicity, providing affordability and accessibility even to poor, resource-limited settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/economics; Nucleic Acid Amplification Techniques/instrumentation*
  15. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  16. Wee YC, Tan KL, Tan PC, Yap SF, Tan JAMA
    Med. J. Malaysia, 2005 Oct;60(4):447-53.
    PMID: 16570706
    Haemoglobin Bart's hydrops foetalis syndrome (--SEA/--SEA) is not compatible with life and contributes to a majority of the hydropic foetuses in the Malaysian Chinese alpha-thalassaemia carriers who possess the 2-alpha-gene deletion in cis (--SEA/alphaalpha). A duplex-PCR which simultaneously amplifies a normal 136 bp sequence between the psialpha-alpha2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (--SEA) between the psialpha2-theta1-globin genes was established. The duplex-PCR which detects the --SEA deletion in both chromosomes serves as a rapid and cost-effective confirmatory test in the antenatal diagnosis of Haemoglobin Bart's hydrops foetalis syndrome in Malaysia. In addition, the duplex-PCR is simple to perform as both the normal and deletion-specific alpha-globin gene sequences are amplified in the same PCR reaction.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  17. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  18. Ng JB, Poh RY, Lee KR, Subrayan V, Deva JP, Lau AY, et al.
    Clin. Lab., 2016 Sep 01;62(9):1731-1737.
    PMID: 28164597 DOI: 10.7754/Clin.Lab.2016.160144
    BACKGROUND: Keratoconus is an ocular degeneration characterized by the thinning of corneal stroma that may lead to varying degrees of myopia and visual impairment. Genetic factors have been reported in the pathology of keratoconus where Asians have a higher incidence, earlier onset, and undergo earlier corneal grafts compared to Caucasians. The visual system homeobox 1 (VSX1) gene forms part of a paired-like homeodomain transcription factor which is responsible for ocular development. The gene was marked as a candidate in genetic studies of keratoconus in various populations. Single nucleotide polymorphisms (SNPs) in the VSX1 gene have been reported to be associated with keratoconus. The detection of the SNPs involves DNA amplification of the VSX1 gene followed by genomic sequencing. Thus, the objective of this study aims to establish sensitive and accurate screening protocols for the molecular characterization of VSX1 polymorphisms.

    METHODS: Keratoconic (n = 74) and control subjects (n = 96) were recruited based on clinical diagnostic tests and selection criteria. DNA extracted from the blood samples was used to genotype VSX1 polymorphisms. In-house designed primers and optimization of PCR conditions were carried out to amplify exons 1 and 3 of the VSX1 gene. PCR conditions including percentage GC content, melting temperatures, and differences in melting temperatures of primers were evaluated to produce sensitive and specific DNA amplifications.

    RESULTS: Genotyping was successfully carried out in 4 exons of the VSX1 gene. Primer annealing temperatures were observed to be crucial in enhancing PCR sensitivity and specificity. Annealing temperatures were carefully evaluated to produce increased specificity, yet not allowing sensitivity to be compromised. In addition, exon 1 of the VSX1 gene was amplified using 2 different sets of primers to produce 2 smaller amplified products with absence of non-specific bands. DNA amplification of exons 1 and 3 consistently showed single band products which were successfully sequenced to yield reproducible data.

    CONCLUSIONS: The use of in-house designed primers and optimized PCR conditions allowed sensitive and specific DNA amplifications that produced distinct single bands. The in-house designed primers and DNA amplification protocols established in this study provide an addition to the current repertoire of primers for accurate molecular characterization of VSX1 gene polymorphisms in keratoconus research.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  19. Gaydos CA, Ngeow YF, Lee HH, Canavaggio M, Welsh LE, Johanson J, et al.
    Sex Transm Dis, 1996 9 1;23(5):402-6.
    PMID: 8885072
    BACKGROUND AND OBJECTIVES: Noninvasive urine screening for Chlamydia trachomatis infections offers a valuable public health tool, which could be of vast importance in chlamydial control programs. The authors evaluated a new DNA amplification method, ligase chain reaction (LCR).

    GOALS: The goal was to ascertain whether urine testing could be used as screening method to detect C. trachomatis infections in commercial sex workers, patients at sexually transmitted diseases clinic, and asymptomatic patients in Kuala Lumpur, Malaysia.

    METHODS: First-void urine specimens from 300 men and 300 women were tested by LCR, as well as by a commercially available enzyme immunoassay. The LCR assay amplifies specific sequences within the chlamydial plasmid with ligand-labeled probes, and the resultant amplicons are detected by an automated immunoassay. Specimens with discrepant results were confirmed by another LCR of the specimen that targeted the gene for the major outer membrane protein (OMP1).

    RESULTS: There were 31 LCR-positive male urine and 37 LCR-positive female urine specimens. The resolved sensitivity and specificity for the LCR of the male urine specimens were 100% and 99.6%, respectively, whereas for female urine specimens, the sensitivity and specificity were 100% and 98.5%, respectively. After resolution of discrepant test results by OMP1 LCR, the prevalence was 10% for men and 11% for women. The urine enzyme immunoassay was not useful in diagnosing C. trachomatis infections in either men or women, as the resolved sensitivities were 10% and 15.2%, respectively. The specificities were 99.6% for men and 98.9% for women.

    CONCLUSIONS: Testing first-void urine specimens by LCR is a highly sensitive and specific method to diagnose C. trachomatis infections in men and women, providing health care workers and public health officials with a new molecular amplification assay that uses noninvasive urine specimens for population-based screening purposes.

    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  20. Lee DJ, Kim SY, Kim JD, Kim YS, Song HJ, Park CY
    Sains Malaysiana, 2015;44:1693-1699.
    This paper presents a low-cost method of constructing the compact UV illuminator, which is considered as an important
    component of a gel documentation system. The procedure involves using a smallest-possible UV lamp and a motor which
    moves the UV lamp in the UV illuminator instead of conventional 4 UV lamps. A comparative analysis of images produced
    by using the commercial gel documentation system and our prototype was carried out. These comparisons were done
    in real DNA gel as well as a reference plate made of quantum dot. The plate was composed of the chambers filled with
    various densities of the quantum dot instead of the Agarose gel containing the ETBR in order to increase the accuracy of
    comparison and the convenience of experiments. Despite the use of only 1 UV lamp, the proposed system demonstrated
    a similar imaging performance compared with the conventional gel documentation system equipped with 4 UV lamps,
    resulting in the great reduction of the system cost.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links