Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Nurul Najian AB, Foo PC, Ismail N, Kim-Fatt L, Yean CY
    Mol. Cell. Probes, 2019 04;44:63-68.
    PMID: 30876924 DOI: 10.1016/j.mcp.2019.03.001
    This study highlighted the performance of the developed integrated loop-mediated isothermal amplification (LAMP) coupled with a colorimetric DNA-based magnetogenosensor. The biosensor operates through a DNA hybridization system in which a specific designed probe captures the target LAMP amplicons. We demonstrated the magnetogenosensor assay by detecting pathogenic Leptospira, which causes leptospirosis. The color change of the assay from brown to blue indicated a positive result, whereas a negative result was indicated by the assay maintaining its brown color. The DNA biosensor was able to detect DNA at a concentration as low as 200 fg/μl, which is equivalent to 80 genomes/reaction. The specificity of the biosensor assay was 100% when it was evaluated with 172 bacterial strains. An integrated LAMP and probe-specific magnetogenosensor was successfully developed, promising simple and rapid visual detection in clinical diagnostics and service as a point-of-care device.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  2. Mallepaddi PC, Lai MY, Podha S, Ooi CH, Liew JW, Polavarapu R, et al.
    Am. J. Trop. Med. Hyg., 2018 09;99(3):704-708.
    PMID: 29943720 DOI: 10.4269/ajtmh.18-0177
    The present study aims to develop a method for rapid diagnosis of malaria using loop-mediated isothermal amplification (LAMP) combined with a lateral flow device (LFD). By adding the biotin-labeled and fluorescein amidite-labeled loop primers to the LAMP reaction solution, the end product can be visualized on a LFD. The entire procedure takes approximately 42 minutes to complete, LAMP assay exhibited high sensitivity, as the detection limit was 0.01 pg/μL for all five Plasmodium species. It was demonstrated that all Plasmodium knowlesi (N = 90) and Plasmodium vivax (N = 56) were positively amplified by LAMP-LFD assay, whereas healthy donor samples (N = 8) were negative. However, not all mixed infections were positive, and other infected nonmalaria samples were negative. Loop-mediated isothermal amplification-LFD represents a robust approach with potential suitability for use in resource-constrained laboratories. We believe that LAMP-LFD has a potential to be developed as point-of-care diagnostic tool in future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  3. Engku Nur Syafirah EAR, Nurul Najian AB, Foo PC, Mohd Ali MR, Mohamed M, Yean CY
    Acta Trop., 2018 Jun;182:223-231.
    PMID: 29545156 DOI: 10.1016/j.actatropica.2018.03.004
    Cholera, caused by Vibrio cholerae is a foodborne disease that frequently reported in food and water related outbreak. Rapid diagnosis of cholera infection is important to avoid potential spread of disease. Among available diagnostic platforms, loop-mediated isothermal amplification (LAMP) is regarded as a potential diagnostic tool due to its rapidity, high sensitivity and specificity and independent of sophisticated thermalcycler. However, the current LAMP often requires multiple pipetting steps, hence is susceptible to cross contamination. Besides, the strict requirement of cold-chain during transportation and storage make its application in low resource settings to be inconvenient. To overcome these problems, the present study is aimed to develop an ambient-temperature-stable and ready-to-use LAMP assay for the detection of toxigenic Vibrio cholerae in low resource settings. A set of specific LAMP primers were designed and tested against 155 V. cholerae and non-V. cholerae strains. Analytical specifity showed that the developed LAMP assay detected 100% of pathogenic V. cholerae and did not amplified other tested bacterial strains. Upon testing against stool samples spiked with toxigenic V. cholerae outbreak isolates, the LAMP assay detected all of the spiked samples (n = 76/76, 100%), in contrast to the conventional PCR which amplified 77.6% (n = 59/76) of the tested specimens. In term of sensitivity, the LAMP assay was 100-fold more sensitive as compared to the conventional PCR method, with LOD of 10 fg per μL and 10 CFU per mL. Following lyophilisation with addition of lyoprotectants, the dry-reagent LAMP mix has an estimated shelf-life of 90.75 days at room temperature.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  4. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  5. Wong YP, Othman S, Lau YL, Radu S, Chee HY
    J. Appl. Microbiol., 2018 Mar;124(3):626-643.
    PMID: 29165905 DOI: 10.1111/jam.13647
    Loop-mediated isothermal amplification (LAMP) amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions by using a DNA polymerase with high displacement strand activity and a set of specifically designed primers to amplify targeted DNA strands. Following its first discovery by Notomi et al. ( Nucleic Acids Res 28: E63), LAMP was further developed over the years which involved the combination of this technique with other molecular approaches, such as reverse transcription and multiplex amplification for the detection of infectious diseases caused by micro-organisms in humans, livestock and plants. In this review, available types of LAMP techniques will be discussed together with their applications in detection of various micro-organisms. Up to date, there are varieties of LAMP detection methods available including colorimetric and fluorescent detection, real-time monitoring using turbidity metre and detection using lateral flow device which will also be highlighted in this review. Apart from that, commercialization of LAMP technique had also been reported such as lyophilized form of LAMP reagents kit and LAMP primer sets for detection of pathogenic micro-organisms. On top of that, advantages and limitations of this molecular detection method are also described together with its future potential as a diagnostic method for infectious disease.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  6. Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL
    Biosens Bioelectron, 2018 Feb 15;100:96-104.
    PMID: 28869845 DOI: 10.1016/j.bios.2017.08.060
    Outbreaks of foodborne diseases have become a global health concern; hence, many improvements and developments have been made to reduce the risk of food contamination. We developed a centrifugal microfluidic automatic wireless endpoint detection system integrated with loop mediated isothermal amplification (LAMP) for monoplex pathogen detection. Six identical sets were designed on the microfluidic compact disc (CD) to perform 30 genetic analyses of three different species of foodborne pathogens. The consecutive loading, mixing, and aliquoting of the LAMP primers/reagents and DNA sample solutions were accomplished using an optimized square-wave microchannel, metering chambers and revulsion per minute (RPM) control. We tested 24 strains of pathogenic bacteria (Escherichia coli, Salmonella spp and Vibrio cholerae), with 8 strains of each bacterium, and performed DNA amplification on the microfluidic CD for 60min. Then, the amplicons of the LAMP reaction were detected using the calcein colorimetric method and further analysed via the developed electronic system interfaced with Bluetooth wireless technology to transmit the results to a smartphone. The system showed a limit of detection (LOD) of 3 × 10-5ngμL-1 DNA by analysing the colour change when tested with chicken meat spiked with the three pathogenic bacteria. Since the entire process was performed in a fully automated way and was easy to use, our microdevice is suitable for point-of-care (POC) testing with high simplicity, providing affordability and accessibility even to poor, resource-limited settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/economics; Nucleic Acid Amplification Techniques/instrumentation*
  7. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  8. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2017 Nov;97(5):1597-1599.
    PMID: 28820700 DOI: 10.4269/ajtmh.17-0427
    In this study, we developed a recombinase polymerase amplification (RPA) assay for specific diagnosis of Plasmodium knowlesi. Genomic DNA was extracted from whole blood samples using a commercial kit. With incubation at 37°C, the samples were successfully amplified within 20 minutes. The end product of RPA was further examined by loading onto agarose gel and a specific band was observed with a size of 128 bp. The RPA assay exhibited high sensitivity with limits of detection down to one copy of the plasmid. From the specificity experiments, it was demonstrated that all P. knowlesi samples (N = 45) were positive while other Plasmodium spp. (N = 42) and negative samples (N = 6) were negative. Therefore, the RPA assay is a highly promising approach with the potential to be used in resource-limited settings. This assay can be further optimized for bedside and on field application.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  9. Foo PC, Chan YY, Mohamed M, Wong WK, Nurul Najian AB, Lim BH
    Anal. Chim. Acta, 2017 May 08;966:71-80.
    PMID: 28372729 DOI: 10.1016/j.aca.2017.02.019
    This study highlighted the development of a four target nitrocellulose-based nucleic acid lateral flow immunoassay biosensor in a dry-reagent strip format for interpretation of double-labelled double-stranded amplicons from thermostabilised triplex loop-mediated isothermal amplification assay. The DNA biosensor contained two test lines which captured biotin and texas red labelled amplicons; a LAMP internal amplification control line that captured digoxigenin labelled amplicon; and a chromatography control line that validated the functionality of the conjugated gold nanoparticles and membrane. The red lines on detection pad were generated when the gold nanoparticles conjugated antibody bound to the fluorescein labelled amplicons, and the capture agents bound to their specific hapten on the other 5' end of the double-stranded amplicon. The applicability of this DNA biosensor was demonstrated using amoebiasis-causing Entamoeba histolytica simultaneously with the non-pathogenic but morphologically identical Entamoeba dispar and Entamoeba moshkovskii. The biosensor detection limit was 10 E. histolytica trophozoites, and revealed 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. Heat stability test showed that the biosensor was stable for at least 181 days at ambient temperature. This ready-to-use and cold-chain-free biosensor facilitated the post-LAMP analysis based on visualisation of lines on strip instead of observation of amplicon patterns in agarose gel.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  10. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar. J., 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  11. Chua EW, Maggo S, Kennedy MA
    Methods Mol. Biol., 2017;1620:65-74.
    PMID: 28540699 DOI: 10.1007/978-1-4939-7060-5_3
    Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  12. Ng JB, Poh RY, Lee KR, Subrayan V, Deva JP, Lau AY, et al.
    Clin. Lab., 2016 Sep 01;62(9):1731-1737.
    PMID: 28164597 DOI: 10.7754/Clin.Lab.2016.160144
    BACKGROUND: Keratoconus is an ocular degeneration characterized by the thinning of corneal stroma that may lead to varying degrees of myopia and visual impairment. Genetic factors have been reported in the pathology of keratoconus where Asians have a higher incidence, earlier onset, and undergo earlier corneal grafts compared to Caucasians. The visual system homeobox 1 (VSX1) gene forms part of a paired-like homeodomain transcription factor which is responsible for ocular development. The gene was marked as a candidate in genetic studies of keratoconus in various populations. Single nucleotide polymorphisms (SNPs) in the VSX1 gene have been reported to be associated with keratoconus. The detection of the SNPs involves DNA amplification of the VSX1 gene followed by genomic sequencing. Thus, the objective of this study aims to establish sensitive and accurate screening protocols for the molecular characterization of VSX1 polymorphisms.

    METHODS: Keratoconic (n = 74) and control subjects (n = 96) were recruited based on clinical diagnostic tests and selection criteria. DNA extracted from the blood samples was used to genotype VSX1 polymorphisms. In-house designed primers and optimization of PCR conditions were carried out to amplify exons 1 and 3 of the VSX1 gene. PCR conditions including percentage GC content, melting temperatures, and differences in melting temperatures of primers were evaluated to produce sensitive and specific DNA amplifications.

    RESULTS: Genotyping was successfully carried out in 4 exons of the VSX1 gene. Primer annealing temperatures were observed to be crucial in enhancing PCR sensitivity and specificity. Annealing temperatures were carefully evaluated to produce increased specificity, yet not allowing sensitivity to be compromised. In addition, exon 1 of the VSX1 gene was amplified using 2 different sets of primers to produce 2 smaller amplified products with absence of non-specific bands. DNA amplification of exons 1 and 3 consistently showed single band products which were successfully sequenced to yield reproducible data.

    CONCLUSIONS: The use of in-house designed primers and optimized PCR conditions allowed sensitive and specific DNA amplifications that produced distinct single bands. The in-house designed primers and DNA amplification protocols established in this study provide an addition to the current repertoire of primers for accurate molecular characterization of VSX1 gene polymorphisms in keratoconus research.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  13. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am. J. Trop. Med. Hyg., 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  14. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal. Chem., 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  15. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  16. Michelle Wong Tzeling J, Yean Yean C
    Analyst, 2016 Feb 21;141(4):1246-9.
    PMID: 26783560 DOI: 10.1039/c5an01741f
    A shelf-stable loop-mediated isothermal amplification (LAMP) reagent for Burkholderia pseudomallei detection is described. The coupling of LAMP reagents with the indirect colorimetric indicator and consequently its lyophilization enable the simple evaluation of results without the need for any advance laboratory instruments. The reagents were found to have a stable shelf life of at least 30 days with well-maintained sensitivity and specificity.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  17. Britton S, Cheng Q, Grigg MJ, Poole CB, Pasay C, William T, et al.
    PLoS Negl Trop Dis, 2016 Feb;10(2):e0004443.
    PMID: 26870958 DOI: 10.1371/journal.pntd.0004443
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority.

    METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

    RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105).

    CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  18. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am. J. Trop. Med. Hyg., 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  19. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  20. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J. Virol. Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links