Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: Nucleic Acid Amplification Techniques
  2. Abdullah J, Saffie N, Sjasri FA, Husin A, Abdul-Rahman Z, Ismail A, et al.
    Braz J Microbiol, 2014;45(4):1385-91.
    PMID: 25763045
    An in-house loop-mediated isothermal amplification (LAMP) reaction was established and evaluated for sensitivity and specificity in detecting the presence of Salmonella Typhi (S. Typhi) isolates from Kelantan, Malaysia. Three sets of primers consisting of two outer and 4 inner were designed based on locus STBHUCCB_38510 of chaperone PapD of S. Typhi genes. The reaction was optimised using genomic DNA of S. Typhi ATCC7251 as the template. The products were visualised directly by colour changes of the reaction. Positive results were indicated by green fluorescence and negative by orange colour. The test was further evaluated for specificity, sensitivity and application on field samples. The results were compared with those obtained by gold standard culture method and Polymerase Chain Reaction (PCR). This method was highly specific and -10 times more sensitive in detecting S. Typhi compared to the optimised conventional polymerase chain reaction (PCR) method.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  3. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  4. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  5. Azi Simon Onyema, Leslie Than Thian Lung, Suresh Kumar, Rukman Awang Hamat
    MyJurnal
    Introduction: Group A streptococcus (GAS) is responsible for high morbidity and mortality globally. Hence, the need to develop sensitive, reliable and cost- effective method of detection is crucial. In this study, we developed a visual detection method for the common virulence gene, streptococcal pyrogenic exotoxin B (speB) involved in invasive GAS diseases using loop-mediated isothermal amplification (LAMP) with fluorescent detection dye (calcein). Meth-ods: The LAMP reaction was optimized at 63°C for 35 minutes using five sets of primer designed with LAMP primer V5 software. When the dye was added prior to amplification, samples with speB DNA developed a characteristic green color after the reaction, but no color reactions were observed in samples with DNAs of non-GAS isolates. De-tection of speB by LAMP assay was done among 43 clinical isolates of blood, pus, wound, tissue and throat samples and ATCCs for controls. Our findings were further reconfirmed by subjecting the LAMP products to 0.5% gel electro-phoresis. Results: The detection limit of this LAMP assay for speB was 10-7 ng/μl of genomic DNA per reaction, which was 10,000-fold more sensitive than conventional PCR 10-3 ng/μl. All 100 % samples were positive for speB gene by LAMP, and 93% by conventional PCR method. Conclusion: LAMP assay could offer remarkably high sensitivity, specificity, repeatability, reliability, affordability, and visibility; it is appropriate for rapid detection of speB in Group A streptococci (GAS) as a point of care testing.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  6. Balachandra D, Ahmad H, Arifin N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2021 Jan;40(1):27-37.
    PMID: 32729057 DOI: 10.1007/s10096-020-03949-x
    Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  7. Bin Ismail CMKH, Bin Mohammad Aidid E, Binti Hamzah HA, Bin Shalihin MSE, Bin Md Nor A
    Arab J Gastroenterol, 2023 Aug;24(3):163-167.
    PMID: 37156704 DOI: 10.1016/j.ajg.2023.02.002
    BACKGROUND AND STUDY AIMS: Colorectal cancer (CRC) is the second most common cancer in Malaysia and mostly detected at advanced stages due to lack of awareness of CRC symptoms and signs. CRC pathogenesis is multifactorial, and there is ambiguous evidence on association of Streptococcus gallolyticus infection with CRC that needs further attention. Thus, a case-control study was conducted to determine whether S. gallolyticus infection is a predictor for CRC occurrence among patients attending Sultan Ahmad Shah Medical Centre@IIUM (SASMEC@IIUM).

    PATIENTS AND METHODS: A total of 33 stool samples from patients diagnosed with CRC and 80 from patients without CRC attending surgical clinic of SASMEC@IIUM were collected and analyzed with iFOBT test and PCR assay to detect S. gallolyticus.

    RESULTS: In this study, the proportion of S. gallolyticus infection was higher among patients with CRC (48.5%) compared with the control group (20%). Univariate analysis shows that occult blood in stool, S. gallolyticus infection and family history were significantly associated with the development of CRC (P 

    Matched MeSH terms: Nucleic Acid Amplification Techniques
  8. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  9. Britton S, Cheng Q, Grigg MJ, Poole CB, Pasay C, William T, et al.
    PLoS Negl Trop Dis, 2016 Feb;10(2):e0004443.
    PMID: 26870958 DOI: 10.1371/journal.pntd.0004443
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority.

    METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

    RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105).

    CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  10. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am J Trop Med Hyg, 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  11. Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O'Mullane AP, et al.
    Nat Commun, 2021 02 05;12(1):802.
    PMID: 33547323 DOI: 10.1038/s41467-021-21121-7
    Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  12. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  13. Chang YM, Swaran Y, Phoon YK, Sothirasan K, Sim HT, Lim KB, et al.
    Forensic Sci Int Genet, 2009 Jun;3(3):e77-80.
    PMID: 19414156 DOI: 10.1016/j.fsigen.2008.07.007
    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  14. Chin Kai Ling, Jaeyres Jani, Zainal Arifin Mustapha
    MyJurnal
    Introduction: Tuberculosis (TB), commonly caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide. The gold standard, microbiological culture for detection and differentiation of mycobac-teria are time-consuming and laborious. The use of fast, easy and sensitive nucleic acid amplification tests (NAATs) for diagnosis of TB remains challenging because there is a high degree of homology within Mtb complex (MTBC) members and absence of target genes in the genome of some strains. This study aimed to identify new candidate genetic marker and to design specific primers to detect Mtb using in silico methods. Methods: Using Basic Local Alignment Search Tool (BLAST) program, Mtb H37Rv chromosome reference genome sequence was mapped with other MTBC members and a single nucleotide polymorphism (SNP) at Rv1970 was found to be specific only for Mtb strains. Mismatch amplification mutation assay (MAMA) combine with polymerase chain reaction (PCR) was used as an alternative method to detect the point mutation. MAMA primers targeting the SNP were designed using Primer-BLAST and the PCR assay was optimized via Taguchi method. Results: The assay amplified a 112 bp gene fragment and was able to detect all Mtb strains, but not the other MTBC members and non-tuberculous Mycobacte-ria. The detection limit of the assay was 60 pg/μl. Conclusion: Bioinformatics has provided predictive identification of many new target markers. The designed primers were found to be highly specific at single-gene target resolution for detection of Mtb.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  15. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  16. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  17. Chua EW, Maggo S, Kennedy MA
    Methods Mol Biol, 2017;1620:65-74.
    PMID: 28540699 DOI: 10.1007/978-1-4939-7060-5_3
    Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  18. Ding CH, Ismail Z, Sulong A, Wahab AA, Gan B, Mustakim S, et al.
    Malays J Pathol, 2020 Dec;42(3):401-407.
    PMID: 33361721
    INTRODUCTION: Rifampicin is a key first-line antimycobacterial agent employed for the treatment of pulmonary tuberculosis (PTB). This study sought to obtain prevalence data on rifampicin-resistant Mycobacterium tuberculosis among smear-positive PTB patients in the Klang District of Malaysia.

    MATERIALS AND METHODS: A total of 103 patients from the Chest Clinic of Hospital Tengku Ampuan Rahimah with sputum smears positive for acid-fast bacilli were included in this cross-sectional study. All sputa were tested using Xpert MTB/RIF to confirm the presence of M. tuberculosis complex and detect rifampicin resistance. Sputa were also sent to a respiratory medicine institute for mycobacterial culture. Positive cultures were then submitted to a reference laboratory, where isolates identified as M. tuberculosis complex underwent drug susceptibility testing (DST).

    RESULTS: A total of 58 (56.3%) patients were newly diagnosed and 45 (43.7%) patients were previously treated. Xpert MTB/RIF was able to detect rifampicin resistance with a sensitivity and specificity of 87.5% and 98.9%, respectively. Assuming that a single resistant result from Xpert MTB/RIF or any DST method was sufficient to denote resistance, a total of 8/103 patients had rifampicinresistant M. tuberculosis. All eight patients were previously treated for PTB (p<0.05). The overall prevalence of rifampicin resistance among smear-positive PTB patients was 7.8%, although it was 17.8% among the previously treated ones.

    CONCLUSION: The local prevalence of rifampicin-resistant M. tuberculosis was particularly high among previously treated patients. Xpert MTB/RIF can be employed in urban district health facilities not only to diagnose PTB in smear-positive patients, but also to detect rifampicin resistance with good sensitivity and specificity.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  19. Engku Nur Syafirah EAR, Nurul Najian AB, Foo PC, Mohd Ali MR, Mohamed M, Yean CY
    Acta Trop, 2018 Jun;182:223-231.
    PMID: 29545156 DOI: 10.1016/j.actatropica.2018.03.004
    Cholera, caused by Vibrio cholerae is a foodborne disease that frequently reported in food and water related outbreak. Rapid diagnosis of cholera infection is important to avoid potential spread of disease. Among available diagnostic platforms, loop-mediated isothermal amplification (LAMP) is regarded as a potential diagnostic tool due to its rapidity, high sensitivity and specificity and independent of sophisticated thermalcycler. However, the current LAMP often requires multiple pipetting steps, hence is susceptible to cross contamination. Besides, the strict requirement of cold-chain during transportation and storage make its application in low resource settings to be inconvenient. To overcome these problems, the present study is aimed to develop an ambient-temperature-stable and ready-to-use LAMP assay for the detection of toxigenic Vibrio cholerae in low resource settings. A set of specific LAMP primers were designed and tested against 155 V. cholerae and non-V. cholerae strains. Analytical specifity showed that the developed LAMP assay detected 100% of pathogenic V. cholerae and did not amplified other tested bacterial strains. Upon testing against stool samples spiked with toxigenic V. cholerae outbreak isolates, the LAMP assay detected all of the spiked samples (n = 76/76, 100%), in contrast to the conventional PCR which amplified 77.6% (n = 59/76) of the tested specimens. In term of sensitivity, the LAMP assay was 100-fold more sensitive as compared to the conventional PCR method, with LOD of 10 fg per μL and 10 CFU per mL. Following lyophilisation with addition of lyoprotectants, the dry-reagent LAMP mix has an estimated shelf-life of 90.75 days at room temperature.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  20. Fauzi FH, Hamzan NI, Rahman NA, Suraiya S, Mohamad S
    J Zhejiang Univ Sci B, 2021 4 13;21(12):961-976.
    PMID: 33843162 DOI: 10.1631/jzus.B2000161
    Worldwide there has been a significant increase in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) etiologically attributed to oncogenic human papillomavirus (HPV). Reliable and accurate identification and detection tools are important as the incidence of HPV-related cancer is on the rise. Several HPV detection methods for OPSCC have been developed and each has its own advantages and disadvantages in regard to sensitivity, specificity, and technical difficulty. This review summarizes our current knowledge of molecular methods for detecting HPV in OPSCC, including HPV DNA/RNA polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), p16 immunohistochemistry (IHC), and DNA/RNA in situ hybridization (ISH) assays. This summary may facilitate the selection of a suitable method for detecting HPV infection, and therefore may help in the early diagnosis of HPV-related carcinoma to reduce its mortality, incidence, and morbidity.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links