Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Osteoblasts/metabolism*
  2. Shirazi FS, Moghaddam E, Mehrali M, Oshkour AA, Metselaar HS, Kadri NA, et al.
    J Biomed Mater Res A, 2014 Nov;102(11):3973-85.
    PMID: 24376053 DOI: 10.1002/jbm.a.35074
    Calcium silicate (CS, CaSiO3 ) is a bioactive, degradable, and biocompatible ceramic and has been considered for its potential in the field of orthopedic surgery. The objective of this study is the fabrication and characterization of the β-CS/poly(1.8-octanediol citrate) (POC) biocomposite, with the goals of controlling its weight loss and improving its biological and mechanical properties. POC is one of the most biocompatible polymers, and it is widely used in biomedical engineering applications. The degradation and bioactivity of the composites were determined by soaking the composites in phosphate-buffered saline and simulated body fluid, respectively. Human osteoblast cells were cultured on the composites to determine their cell proliferation and adhesion. The results illustrated that the flexural and compressive strengths were significantly enhanced by a modification of 40% POC. It was also concluded that the degradation bioactivity and amelioration of cell proliferation increased significantly with an increasing β-CS content.
    Matched MeSH terms: Osteoblasts/metabolism*
  3. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Osteoblasts/metabolism*
  4. Bin Karim K, Giribabu N, Bin Salleh N
    Appl Biochem Biotechnol, 2024 Feb;196(2):821-840.
    PMID: 37219787 DOI: 10.1007/s12010-023-04515-9
    Evidence pointed towards the benefits of Marantodes pumilum in treating osteoporosis after menopause; however, the detailed mechanisms still have not been explored. Therefore, this study aims to identify the molecular mechanisms underlying M. pumilum's bone-protective effect via the involvement of RANK/RANKL/OPG and Wnt/β-catenin signaling pathways. Ovariectomized adult female rats were given M. pumilum leaf aqueous extract (MPLA) (50 and 100 mg/kg/day) and estrogen (positive control) orally for twenty-eight consecutive days. Following the treatment, rats were sacrificed, and femur bones were harvested. Blood was withdrawn for analysis of serum Ca2+, PO43-, and bone alkaline phosphatase (BALP) levels. The bone microarchitectural changes were observed by H&E and PAS staining and distribution and expression of RANK/RANKL/OPG and Wnt3a/β-catenin and its downstream proteins were determined by immunohistochemistry, immunofluorescence, Western blot, and real-time PCR. MPLA treatment increased serum Ca2+ and PO43- levels and reduced serum BALP levels (p 
    Matched MeSH terms: Osteoblasts/metabolism
  5. Wong SK, Ima-Nirwana S, Chin KY
    Bosn J Basic Med Sci, 2020 Nov 02;20(4):423-429.
    PMID: 32156247 DOI: 10.17305/bjbms.2020.4664
    Telomeres are repetitive DNA sequences located at the end of chromosomes that serve as a protective barrier against chromosomal deterioration during cell division. Approximately 50-200 base pairs of nucleotides are lost per cell division, and new repetitive nucleotides are added by the enzyme telomerase, allowing telomere maintenance. Telomere shortening has been proposed as an indicator for biological aging, but its relationship with age-related osteoporosis is ambiguous. We summarize the current evidence on the relationship between telomere length and bone health in experimental and epidemiological studies, which serve as a scientific reference for the development of novel diagnostic markers of osteoporosis or novel therapeutics targeting telomere and telomerase of bone cells to treat osteoporosis.
    Matched MeSH terms: Osteoblasts/metabolism
  6. Rozila I, Azari P, Munirah S, Wan Safwani WK, Gan SN, Nur Azurah AG, et al.
    J Biomed Mater Res A, 2016 Feb;104(2):377-87.
    PMID: 26414782 DOI: 10.1002/jbm.a.35573
    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs.
    Matched MeSH terms: Osteoblasts/metabolism*
  7. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Osteoblasts/metabolism
  8. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
    Matched MeSH terms: Osteoblasts/metabolism*
  9. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Osteoblasts/metabolism
  10. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Osteoblasts/metabolism
  11. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Osteoblasts/metabolism
  12. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Osteoblasts/metabolism*
  13. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

    Matched MeSH terms: Osteoblasts/metabolism
  14. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF
    Biomed Pharmacother, 2008 Jun;62(5):328-32.
    PMID: 17988826
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of cyclic AMP (cAMP) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of adenylyl cyclase inhibitor (SQ22536), NO scavenger (carboxy PTIO) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NIO), was assessed by adding these to the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody prior to culturing on HA surfaces with or without the presence of SNAP. The levels of cAMP and cGMP were determined from the 3-day culture supernatants. The results showed that the production of cAMP but not cGMP by HA-stimulated HOS cells was augmented by SNAP. SQ22536 and carboxy PTIO suppressed but L-NIO only partially inhibited the production of cAMP by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody suppressed the production of cAMP by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of cAMP, perhaps, by augmenting adenylyl cyclase activity initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Osteoblasts/metabolism
  15. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Osteoblasts/metabolism
  16. Nizar AM, Nazrun AS, Norazlina M, Norliza M, Ima Nirwana S
    Clin Ter, 2011;162(6):533-8.
    PMID: 22262323
    Vitamin E is an antioxidant that may protect bone against oxidative stress-induced osteoporosis. This in vitro study was conducted to determine the protective effects of a-tocopherol and γ-tocotrienol on osteoblasts, the bone forming cells, against oxidative stress.
    Matched MeSH terms: Osteoblasts/metabolism*
  17. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Osteoblasts/metabolism
  18. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Osteoblasts/metabolism
  19. Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN, Ima-Nirwana S
    Int J Mol Sci, 2019 Mar 22;20(6).
    PMID: 30909398 DOI: 10.3390/ijms20061453
    Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
    Matched MeSH terms: Osteoblasts/metabolism
  20. Wan Hasan WN, Abd Ghafar N, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2018;12:1715-1726.
    PMID: 29942115 DOI: 10.2147/DDDT.S168935
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis. However, detailed studies of the effects of AnTT on preosteoblastic cells were limited. This study was conducted to investigate the osteogenic effect of AnTT on preosteoblast MC3T3-E1 cells in a time-dependent manner.

    MATERIALS AND METHODS: Murine MC3T3-E1 preosteoblastic cells were cultured in the different concentrations of AnTT (0.001-1 µg/mL) up to 24 days. Expression of osteoblastic differentiation markers was measured by qPCR (osterix [OSX], collagen 1 alpha 1 [COL1α1], alkaline phosphatase [ALP], and osteocalcin [OCN]) and by fluorometric assay for ALP activity. Detection of collagen and mineralized nodules was done via Direct Red staining and Alizarin Red staining, respectively.

    RESULTS: The results showed that osteoblastic differentiation-related genes, such as OSX, COL1α1, ALP, and OCN, were significantly increased in the AnTT-treated groups compared to the vehicle group in a time-dependent manner (P<0.05). Type 1 collagen level was increased from day 3 to day 15 in the AnTT-treated groups, while ALP activity was increased from day 9 to day 21 in the AnTT-treated groups (P<0.05). Enhanced mineralization was observed in the AnTT-treated groups via increasing Alizarin Red staining from day 3 to day 21 (P<0.05).

    CONCLUSION: Our results suggest that AnTT enhances the osteogenic activity by promoting the bone formation-related genes and proteins in a temporal and sequential manner.

    Matched MeSH terms: Osteoblasts/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links