Displaying publications 1 - 20 of 250 in total

Abstract:
Sort:
  1. Zainuddin Z, Wan Daud WR, Pauline O, Shafie A
    Bioresour Technol, 2011 Dec;102(23):10978-86.
    PMID: 21996481 DOI: 10.1016/j.biortech.2011.09.080
    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.
    Matched MeSH terms: Paper
  2. Karimi S, Abdulkhani A, Karimi A, Ghazali AH, Ahmadun FL
    Environ Technol, 2010 Apr 1;31(4):347-56.
    PMID: 20450108 DOI: 10.1080/09593330903473861
    The efficiency of advanced oxidation processes (AOPs), enzymatic treatment and combined enzymatic/AOP sequences for the colour remediation of soda and chemimechanical pulp and paper mill effluent was investigated. The results indicated that under all circumstances, the AOP using ultraviolet irradiation (photo-Fenton) was more efficient in the degradation of effluent components in comparison with the dark reaction. It was found that both versatile peroxidase (VP) from Bjerkandera adusta and laccase from Trametes versicolor, as pure enzymes, decolorize the deep brown effluent to a clear light-yellow solution. In addition, it was found that in the laccase treatment, the decolorization rates of both effluents were enhanced in the presence of 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate), while in the case of VP, Mn(+2) decreased the efficiency of the decolorization treatment. The concomitant use of enzymes and AOPs imposes a considerable effect on the colour remediation of effluent samples.
    Matched MeSH terms: Paper
  3. Luan Eng LI, Wiltshire BG, Lehmann H
    Biochim. Biophys. Acta, 1973 Oct 18;322(2):224-30.
    PMID: 4765089
    Matched MeSH terms: Electrophoresis, Paper
  4. Eng LI, McKay DA, Govindasamy S
    PMID: 5002823
    Matched MeSH terms: Electrophoresis, Paper
  5. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Paper
  6. Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Abdul Rahman R, Hasan Kadhum AA
    J Environ Manage, 2013 May 30;121:179-90.
    PMID: 23542216 DOI: 10.1016/j.jenvman.2013.02.016
    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
    Matched MeSH terms: Paper
  7. Wijedasa LS, Posa MR, Clements GR
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581283 DOI: 10.1038/527305b
    Matched MeSH terms: Paper
  8. Zwain HM, Chang SM, Dahlan I
    Prep Biochem Biotechnol, 2019;49(4):344-351.
    PMID: 30712465 DOI: 10.1080/10826068.2019.1566144
    Microbial content formed in bioreactors plays a significant role in the anaerobic process. Therefore, the physicochemical characteristics of microbial content in a modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG), and derivative thermogravimetric (DTG) analyses, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), and surface area analyzer. FTIR spectra revealed that the microbial content had stronger characteristic peaks corresponding to alcohols, water, lipids carbohydrates, proteins, and mineral compounds. Calcite, muscovite, and lepidolite were the prevalent mineral phases found by XRD analysis. The elemental of these minerals like C, Ca, N, O, and Si was confirmed by XPS results. The microbial content samples from each compartment showed similar thermal behavior. SEM images showed that straight rod-shaped and Methanosaeta-like microorganisms were predominant, whereas C, O, and Ca were noticed by EDS on the surface of granules. The BET surface areas and pores of granules are found to decline throughout the reactor's compartment, where Compartment 1 had the largest values. Thus, the findings of this study establish further understanding of the physicochemical properties of microbial content formed in MAI-BR during the RPME treatment.
    Matched MeSH terms: Paper
  9. Neoh KB, Lee CC, Lee CY
    Pest Manag Sci, 2014 Feb;70(2):240-4.
    PMID: 23554339 DOI: 10.1002/ps.3544
    Mutual interactions, including reciprocal food sharing and grooming between chlorantraniliprole- and fipronil-treated, and untreated Asian subterranean termites, Coptotermes gestroi (Wasmann), were examined using rubidium as a tracer. Two questions were addressed in this study: (1) After insecticide treatment, does the mutual interaction between termiticide-treated termites and untreated nestmates increase? (2) Does the nutritional status of both termiticide-treated termites and untreated nestmates affect the mutual interaction?
    Matched MeSH terms: Paper
  10. Teoh HL, Ahmad IS, Johari NMK, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2018;20(4):369-380.
    PMID: 29953397 DOI: 10.1615/IntJMedMushrooms.2018025986
    Mushroom cultivation has become an important component of agriculture, providing food and contributing to the global economy. It uses vertical space and addresses issues of food quality, health improvement, and environmental sustainability. Auricularia mushrooms are popular ingredients in traditional Chinese cuisine. The objective of this study was to determine yield and evaluate radical scavenging capacity of A. polytricha cultivated on rubberwood sawdust on a large scale; we measured total phenolic content; DPPH, hydroxyl, superoxide anion, and peroxyl radical scavenging; and reducing power. Cultivation on rubberwood sawdust produces an average of 4 harvests per bag and a biological efficiency of 80-82%. The antioxidant capacity investigations revealed that the ethyl acetate fraction was the most potent radical scavenger in all assays except that for superoxide anions, whereas the aqueous fraction exhibited mild to moderate antioxidant capacity in scavenging the various radicals. Artificial cultivation of A. polytricha on rubberwood sawdust yields many sporophores with potent antioxidant capacity.
    Matched MeSH terms: Paper
  11. Rida Tajau, Mohd hilmi Mahmood, Mek Zah Salleh, Khairul Zaman Mohd dahlan, Rosley Che ismail, Sharilla Muhammad Faisal, et al.
    Sains Malaysiana, 2013;42:459-467.
    In recent years, there are growing trends in using palm oil as raw materials in radiation curable resins production. In this study, the acrylated palm oil resins i.e. the EPOLA (epoxidized palm oil acrylate) and the POBUA (palm oil based urethane acrylate) were synthesized using two different systems, i.e. the 25 liter pilot scale reactor synthesis system and the 2 liter (L) laboratory scale reactor synthesis system through chemical processes known as acrylation and isocyanation. In this
    paper, the property of the acrylated resins which were produced by these two systems were evaluated and compared between each other. Their properties were characterized using the Fourier transform infrared (FTIR) spectrophotometer for functional group identification; the gel permeation chromatography (GPC) for molecular weight (Mw) determination, the Brookfield viscometer for viscosity measurements, the acid values (AV) and the oxirane oxygen contents (OOC) analysis. As a result, the production process for both the 2 L and 25 L reactor system were found to be time consuming and the main advantages for the 25 L reactor was its higher productivity as compared with the 2 L reactor system with the same synthesis process parameters i.e. the temperatures and the experimental methods. Besides that, the 25 L reactor synthesis
    process was found to be safe, easy to control and served unpolluted process to the environments. The final products, the acrylated palm oil resins were formulated into ultraviolet (UV) curable compounds before subjecting them under UVirradiation. As a result, the UV-curable palm oil resins showed potential uses as pressure sensitive adhesives, printing inks including overprint varnishes (OPV) and coatings.
    Matched MeSH terms: Paper
  12. Noordin R, Yunus MH, Saidin S, Mohamed Z, Fuentes Corripio I, Rubio JM, et al.
    Am J Trop Med Hyg, 2020 12;103(6):2233-2238.
    PMID: 32996457 DOI: 10.4269/ajtmh.20-0348
    Independent evaluations of XEh Rapid®, an IgG4-based rapid dipstick test, were performed to assess its diagnostic performance to detect amebic liver abscess (ALA) using 405 samples at seven laboratories in four countries. The test showed high diagnostic specificity (97-100%) when tested with samples from healthy individuals (n = 100) and patients with other diseases (n = 151). The diagnostic sensitivity was tested with a total of 154 samples, and the results were variable. It was high in three laboratories (89-94%), and moderate (72%) and low (38%) in two other laboratories. Challenges and issues faced in the evaluation process are discussed. Nevertheless, XEh Rapid is promising to be developed into a point-of-care test in particular for resource-limited settings, and thus merits further confirmation of its diagnostic sensitivity.
    Matched MeSH terms: Paper
  13. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
    Matched MeSH terms: Paper*
  14. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Paper*
  15. Alanazi A, Alkhorayef M, Alzimami K, Jurewicz I, Abuhadi N, Dalton A, et al.
    Appl Radiat Isot, 2016 Nov;117:106-110.
    PMID: 26777569 DOI: 10.1016/j.apradiso.2016.01.001
    Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance.
    Matched MeSH terms: Paper*
  16. Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, et al.
    Nanoscale Res Lett, 2014 Jan 15;9(1):33.
    PMID: 24428818 DOI: 10.1186/1556-276X-9-33
    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.
    Matched MeSH terms: Paper
  17. Osman WH, Abdullah SR, Mohamad AB, Kadhum AA, Rahman RA
    J Environ Manage, 2013 May 30;121:80-6.
    PMID: 23524399 DOI: 10.1016/j.jenvman.2013.02.005
    A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
    Matched MeSH terms: Paper
  18. Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Rahman RA, Kadhum AA
    Environ Technol, 2012 Apr-May;33(7-9):915-26.
    PMID: 22720416
    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
    Matched MeSH terms: Paper
  19. Wan Rosli WD, Law KN, Zainuddin Z, Asro R
    Bioresour Technol, 2004 Jul;93(3):233-40.
    PMID: 15062817
    Caustic pulping of oil-palm frond-fiber strands was conducted following a central composite design using a two-level factorial plan involving three pulping variables (temperature: 160-180 degrees C, time: 1-2 h, alkali charge: 20-30% NaOH). Responses of pulp properties to the process variables were analyzed using a statistical software (DESIGN-EXPERT). The results indicated that frond-fiber strands could be pulped with ease to about 35-45% yield. Statistically, the reaction time was not a significant factor while the influences of the treatment temperature and caustic charge were in general significantly relative to the properties of the resultant pulps.
    Matched MeSH terms: Paper
  20. Abubakar AR, Haque M
    J Pharm Bioallied Sci, 2020 01 29;12(1):1-10.
    PMID: 32801594 DOI: 10.4103/jpbs.JPBS_175_19
    Preparation of medicinal plants for experimental purposes is an initial step and key in achieving quality research outcome. It involves extraction and determination of quality and quantity of bioactive constituents before proceeding with the intended biological testing. The primary objective of this study was to evaluate various methods used in the preparation and screening of medicinal plants in our daily research. Although the extracts, bioactive fractions, or compounds obtained from medicinal plants are used for different purposes, the techniques involved in producing them are generally the same irrespective of the intended biological testing. The major stages included in acquiring quality bioactive molecule are the selection of an appropriate solvent, extraction methods, phytochemical screening procedures, fractionation methods, and identification techniques. The nitty-gritty of these methods and the exact road map followed solely depends on the research design. Solvents commonly used in extraction of medicinal plants are polar solvent (e.g., water, alcohols), intermediate polar (e.g., acetone, dichloromethane), and nonpolar (e.g., n-hexane, ether, chloroform). In general, extraction procedures include maceration, digestion, decoction, infusion, percolation, Soxhlet extraction, superficial extraction, ultrasound-assisted, and microwave-assisted extractions. Fractionation and purification of phytochemical substances are achieved through application of various chromatographic techniques such as paper chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. Finally, compounds obtained are characterized using diverse identification techniques such as mass spectroscopy, infrared spectroscopy, ultraviolet spectroscopy, and nuclear magnetic resonance spectroscopy. Subsequently, different methods described above can be grouped and discussed according to the intended biological testing to guide young researchers and make them more focused.
    Matched MeSH terms: Chromatography, Paper
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links