Displaying publications 1 - 20 of 1451 in total

Abstract:
Sort:
  1. Wong LW, Ong KS, Khoo JR, Goh CBS, Hor JW, Lee SM
    Expert Rev Gastroenterol Hepatol, 2020 Nov;14(11):1093-1105.
    PMID: 32755242 DOI: 10.1080/17474124.2020.1806711
    INTRODUCTION: Intestinal parasitic infection (IPI) is a global health concern among socioeconomically deprived communities in many developing countries. Many preventative strategies have been deployed to control IPI, however, there is a lack in standards on the techniques used to diagnose and monitor the prevalence of IPI.

    AREAS COVERED: The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies.

    EXPERT OPINION: Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.

    Matched MeSH terms: Parasitology
  2. Lau YL, Lee WC, Tan LH, Kamarulzaman A, Syed Omar SF, Fong MY, et al.
    Malar J, 2013;12:389.
    PMID: 24180319 DOI: 10.1186/1475-2875-12-389
    Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research.
    Matched MeSH terms: Malaria/parasitology
  3. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY
    Parasit Vectors, 2011;4:94.
    PMID: 21619624 DOI: 10.1186/1756-3305-4-94
    Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  4. Nurul AA, Norazmi MN
    Parasitol Res, 2011 Apr;108(4):887-97.
    PMID: 21057812 DOI: 10.1007/s00436-010-2130-5
    Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
    Matched MeSH terms: Erythrocytes/parasitology
  5. Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, et al.
    PLoS One, 2016;11(3):e0149519.
    PMID: 26930493 DOI: 10.1371/journal.pone.0149519
    BACKGROUND: Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

    METHODS: The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.

    RESULTS: Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.

    CONCLUSION: Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

    Matched MeSH terms: Malaria/parasitology*
  6. Cyranoski D, Law YH, Ong S, Phillips N, Zastrow M
    Nature, 2018 06;558(7711):502-510.
    PMID: 29950631 DOI: 10.1038/d41586-018-05506-1
    Matched MeSH terms: Feces/parasitology
  7. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd-Aspollah MS, Zakaria ZA, et al.
    Trop Biomed, 2014 Mar;31(1):89-96.
    PMID: 24862048 MyJurnal
    Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
    Matched MeSH terms: Trypanosomiasis/parasitology
  8. Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S
    Korean J Parasitol, 2019 Aug;57(4):369-377.
    PMID: 31533403 DOI: 10.3347/kjp.2019.57.4.369
    Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  9. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Entamoebiasis/parasitology
  10. Chai CS, Liam CK, Pang YK, Ng DL, Tan SB, Wong TS, et al.
    Int J Chron Obstruct Pulmon Dis, 2019 03 01;14:565-573.
    PMID: 30880946 DOI: 10.2147/COPD.S196109
    Introduction: The Spanish COPD guideline (GesEPOC) classifies COPD into four clinical phenotypes based on the exacerbation frequency and dominant clinical manifestations. In this study, we compared the disease-specific health-related quality of life (HRQoL) of patients with different clinical phenotypes.

    Methods: This was a cross-sectional study of patients with COPD attending the respiratory medicine clinic of University of Malaya Medical Centre from 1 June 2017 to 31 May 2018. Disease-specific HRQoL was assessed by using the COPD Assessment Test (CAT) and St George's Respiratory Questionnaire for COPD (SGRQ-c).

    Results: Of 189 patients, 28.6% were of non-exacerbator phenotype (NON-AE), 18.5% were of exacerbator with emphysema phenotype (AE NON-CB), 39.7% were of exacerbator with chronic bronchitis phenotype (AE CB), and 13.2% had asthma-COPD overlap syndrome phenotype (ACOS). The total CAT and SGRQ-c scores were significantly different between the clinical phenotypes (P<0.001). Patients who were AE CB had significantly higher total CAT score than those with ACOS (P=0.033), AE NON-CB (P=0.001), and NON-AE (P<0.001). Concerning SGRQ-c, patients who were AE CB also had a significantly higher total score than those with AE NON-CB (P=0.001) and NON-AE (P<0.001). However, the total SGRQ-c score of AE CB patients was only marginally higher than those who had ACOS (P=0.187). There was a significant difference in the score of each CAT item (except CAT 7) and SGRQ-c components between clinical phenotypes, with AE CB patients recording the highest score in each of them.

    Conclusion: Patients who were AE CB had significantly poorer HRQoL than other clinical phenotypes and recorded the worst score in each of the CAT items and SGRQ-c components. Therefore, AE CB patients may warrant a different treatment approach that focuses on the exacerbation and chronic bronchitis components.

    Matched MeSH terms: Pulmonary Emphysema/parasitology
  11. Lau YL, Tan LH, Chin LC, Fong MY, Noraishah MA, Rohela M
    Emerg Infect Dis, 2011 Jul;17(7):1314-5.
    PMID: 21762601 DOI: 10.3201/eid1707.101295
    Matched MeSH terms: Malaria/parasitology
  12. Mat Ariffin N, Islahudin F, Kumolosasi E, Makmor-Bakry M
    BMC Infect Dis, 2017 12 08;17(1):759.
    PMID: 29216842 DOI: 10.1186/s12879-017-2868-9
    BACKGROUND: Recurrence rates of Plasmodium vivax infections differ across various geographic regions. Interestingly, South-East Asia and the Asia-Pacific region are documented to exhibit the most frequent recurrence incidences. Identifying patients at a higher risk for recurrences gives valuable information in strengthening the efforts to control P. vivax infections. The aim of the study was to develop a tool to identify P. vivax- infected patients that are at a higher risk of recurrence in Malaysia.

    METHODS: Patient data was obtained retrospectively through the Ministry of Health, Malaysia, from 2011 to 2016. Patients with incomplete data were excluded. A total of 2044 clinical P. vivax malaria cases treated with primaquine were included. Data collected were patient, disease, and treatment characteristics. Two-thirds of the cases (n = 1362) were used to develop a clinical risk score, while the remaining third (n = 682) was used for validation.

    RESULTS: Using multivariate analysis, age (p = 0.03), gametocyte sexual count (p = 0.04), indigenous transmission (p = 0.04), type of treatment (p = 0.12), and incomplete primaquine treatment (p = 0.14) were found to be predictors of recurrence after controlling for other confounding factors; these predictors were then used in developing the final model. The beta-coefficient values were used to develop a clinical scoring tool to predict possible recurrence. The total scores ranged between 0 and 8. A higher score indicated a higher risk for recurrence (odds ratio [OR]: 1.971; 95% confidence interval [CI]: 1.562-2.487; p ≤ 0.001). The area under the receiver operating characteristic (ROC) curve of the developed (n = 1362) and validated model (n = 682) was of good accuracy (ROC: 0.728, 95% CI: 0.670-0.785, p value 

    Matched MeSH terms: Malaria, Vivax/parasitology
  13. Ali AH, Sudi S, Basir R, Embi N, Sidek HM
    J Med Food, 2017 Feb;20(2):152-161.
    PMID: 28146408 DOI: 10.1089/jmf.2016.3813
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
    Matched MeSH terms: Malaria/parasitology
  14. Kan SP, Pathmanathan R
    PMID: 1822870
    Sarcocystis is a tissue coccidian with an obligatory two-host life cycle. The sexual generations of gametogony and sporogony occur in the lamina propria of the small intestine of definitive hosts which shed infective sporocysts in their stools and present with intestinal sarcocystosis. Asexual multiplication occurs in the skeletal and cardiac muscles of intermediate hosts which harbor Sarcocystis cysts in their muscles and present with muscular sarcocystosis. In Malaysia, Sarcocystis cysts have been reported from many domestic and wild animals, including domestic and field rats, moonrats, bandicoots, slow loris, buffalo, and monkey, and man. The known definitive hosts for some species of Sarcocystis are the domestic cat, dog and the reticulated python. Human muscular sarcocystosis in Malaysia is a zoonotic infection acquired by contamination of food or drink with sporocysts shed by definitive hosts. The cysts reported in human muscle resembled those seen in the moonrat, Echinosorex gymnurus, and the long-tailed monkey, Macaca fascicularis. While human intestinal sarcocystosis has not been reported in Malaysia so far, it can be assumed that such cases may not be infrequent in view of the occurrence of Sarcocystis cysts in meat animals, such as buffalo. The overall seroprevalence of 19.8% reported among the main racial groups in Malaysia indicates that sarcocystosis (both the intestinal and muscular forms) may be emerging as a significant food-borne zoonotic infection in the country.
    Matched MeSH terms: Food Parasitology
  15. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, et al.
    Parasitol Res, 2016 Mar;115(3):997-1013.
    PMID: 26612497 DOI: 10.1007/s00436-015-4828-x
    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.
    Matched MeSH terms: Malaria/parasitology
  16. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
    Matched MeSH terms: Malaria/parasitology
  17. Kosuwin R, Putaporntip C, Tachibana H, Jongwutiwes S
    PLoS One, 2014;9(10):e110463.
    PMID: 25333779 DOI: 10.1371/journal.pone.0110463
    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006-2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006-2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge on geographic diversity in PvTRAP constitutes an important basis for vaccine design provided that vaccination largely confers variant-specific immunity.
    Matched MeSH terms: Malaria, Vivax/parasitology
  18. Omar A, Bakar OC, Adam NF, Osman H, Osman A, Suleiman AH, et al.
    Korean J Parasitol, 2015 Feb;53(1):29-34.
    PMID: 25748706 DOI: 10.3347/kjp.2015.53.1.29
    The aim of this cross sectional case control study was to examine the serofrequency and serointensity of Toxoplasma gondii (Tg) IgG, IgM, and DNA among patients with schizophrenia. A total of 101 patients with schizophrenia and 55 healthy controls from Sungai Buloh Hospital, Selangor, Malaysia and University Malaya Medical Center (UMMC) were included in this study. The diagnosis of schizophrenia was made based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The presence of Tg infection was examined using both indirect (ELISA) and direct (quantitative real-time PCR) detection methods by measuring Tg IgG and IgM and DNA, respectively. The serofrequency of Tg IgG antibodies (51.5%, 52/101) and DNA (32.67%, 33/101) among patients with schizophrenia was significantly higher than IgG (18.2%, 10/55) and DNA (3.64%, 2/55) of the controls (IgG, P=0.000, OD=4.8, CI=2.2-10.5; DNA, P=0.000, OD=12.9, CI=2.17-10.51). However, the Tg IgM antibody between patients with schizophrenia and controls was not significant (P>0.005). There was no significant difference (P>0.005) in both serointensity of Tg IgG and DNA between patients with schizophrenia and controls. These findings have further demonstrated the strong association between the active Tg infection and schizophrenia.
    Matched MeSH terms: Toxoplasmosis/parasitology*
  19. Hussain T, Periasamy K, Nadeem A, Babar ME, Pichler R, Diallo A
    Vet Parasitol, 2014 Dec 15;206(3-4):188-99.
    PMID: 25468018
    Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world. The present study aimed to assess the sympatric species distribution, genetic diversity, population structure and frequency of β-tubulin isotype 1 alleles associated with benzimidazole resistance. Internal transcribed spacer 2 (ITS2) sequences revealed three sympatric species of Haemonchus, H. contortus, H. placei and H. longistipes with 12 distinct genotypes circulating among ruminant hosts in Pakistan. High genetic variability was observed in Pakistani Haemonchus isolates at nicotine amide dehydrogenase subunit 4 (ND4) and cytochrome oxidase subunit 1 (COI) gene loci. Intra-population diversity parameters were higher in H. contortus isolates than H. placei. Phylogenetic analysis of ND4 and COI sequences did not reveal clustering of haplotypes originating from a particular host indicating high rate of gene flow among Haemonchus parasites infecting sheep, goat and cattle in Pakistan. ND4 and COI haplotypes from Pakistan were compared to sequences of Haemonchus isolates from 11 countries to elucidate the population structure. Multidimensional scaling (MDS) plot of pairwise FST derived from 531 ND4 haplotypes revealed clustering together of H. contortus from Pakistan, China, Malaysia and Italy while the isolates from Yemen and United States were found to be genetically distinct. With respect to H. placei, isolates from Pakistan were found to be genetically differentiated from isolates of other countries. The tests for selective neutrality revealed negative D statistics and did not reveal significant deviations in Pakistani Haemonchus populations while significant deviation (P < 0.05) was observed in Brazilian and Chinese H. contortus populations. Median Joining (MJ) network of ND4 haplotypes revealed Yemenese H. contortus being closer to H. placei cluster. β-tubulin isotype 1 genotyping revealed 7.86% frequency of Y allele associated with benzimidazole resistance at F200Y locus in Pakistani Haemonchus isolates.
    Matched MeSH terms: Haemonchiasis/parasitology
  20. Esposito DH, Stich A, Epelboin L, Malvy D, Han PV, Bottieau E, et al.
    Clin Infect Dis, 2014 Nov 15;59(10):1401-10.
    PMID: 25091309 DOI: 10.1093/cid/ciu622
    BACKGROUND: Through 2 international traveler-focused surveillance networks (GeoSentinel and TropNet), we identified and investigated a large outbreak of acute muscular sarcocystosis (AMS), a rarely reported zoonosis caused by a protozoan parasite of the genus Sarcocystis, associated with travel to Tioman Island, Malaysia, during 2011-2012.

    METHODS: Clinicians reporting patients with suspected AMS to GeoSentinel submitted demographic, clinical, itinerary, and exposure data. We defined a probable case as travel to Tioman Island after 1 March 2011, eosinophilia (>5%), clinical or laboratory-supported myositis, and negative trichinellosis serology. Case confirmation required histologic observation of sarcocysts or isolation of Sarcocystis species DNA from muscle biopsy.

    RESULTS: Sixty-eight patients met the case definition (62 probable and 6 confirmed). All but 2 resided in Europe; all were tourists and traveled mostly during the summer months. The most frequent symptoms reported were myalgia (100%), fatigue (91%), fever (82%), headache (59%), and arthralgia (29%); onset clustered during 2 distinct periods: "early" during the second and "late" during the sixth week after departure from the island. Blood eosinophilia and elevated serum creatinine phosphokinase (CPK) levels were observed beginning during the fifth week after departure. Sarcocystis nesbitti DNA was recovered from 1 muscle biopsy.

    CONCLUSIONS: Clinicians evaluating travelers returning ill from Malaysia with myalgia, with or without fever, should consider AMS, noting the apparent biphasic aspect of the disease, the later onset of elevated CPK and eosinophilia, and the possibility for relapses. The exact source of infection among travelers to Tioman Island remains unclear but needs to be determined to prevent future illnesses.

    Matched MeSH terms: Muscles/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links