Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Lilia K, Rosnina Y, Abd Wahid H, Zahari ZZ, Abraham M
    Anat Histol Embryol, 2010 Dec;39(6):569-75.
    PMID: 20809915 DOI: 10.1111/j.1439-0264.2010.01030.x
    The Malayan tapir (Tapirus indicus) is the largest among the four tapir species and is listed as an endangered species. Ultrasound examination and description of the external anatomy of the female reproductive system of three adult females were performed, whereas the internal anatomy was investigated in necropsied samples of four adult females and one subadult female. Descriptions of the male external genitalia were conducted on one adult male. Gross examination revealed the presence of a bicornuate uterus. The uterine cervix is firm and muscular with projections towards its lumen, which is also evident on ultrasonography. The elongated and relatively small ovaries, which have a smooth surface, could not be imaged on ultrasonography, due to their anatomical position. The testes are located inside a slightly pendulous scrotum that is sparsely covered with soft, short hairs. The penis has one dorsal and two lateral penile projections just proximal to the glans penis.
    Matched MeSH terms: Perissodactyla/anatomy & histology*
  2. Zahari ZZ, Rosnina Y, Wahid H, Jainudeen MR
    Anat Histol Embryol, 2002 Dec;31(6):350-4.
    PMID: 12693754
    The Sumatran rhinoceros (Dicerorhinus sumatrensis) is the smallest of all the rhino species. It is one of the rarest mammals in the world and is in imminent danger of extinction. A study was carried out on seven wild-caught females, three wild-caught males and one captive born female Sumatran rhinoceros at the Sumatran Rhinoceros Breeding Centre in Sungai Dusun, Selangor, Malaysia, beginning 1990. As a result of the paucity of scientific information on the reproductive biology of the Sumatran rhinoceros, this study was conducted to obtain information, which could assist in the captive breeding of this endangered and near extinct species. The anatomy of the reproductive system was based on two post-mortem specimens and transrectal real-time ultrasonography in six adult females. Genitalia of the Sumatran rhinoceros were similar to those of other species of rhinoceroses. The cervix consisted of several folds, the uterus was bicornuate with a short body and prominent horns and the ovaries were completely covered by the fimbriated end of the fallopian tube. The internal genitalia could be imaged by ultrasonography. The testes were located within a pendulous scrotum. Two lateral projections were located at the base of the penis. A well-defined process glandis was present at the tip of the penis. The accessory sex glands and the testes could be imaged by ultrasonography.
    Matched MeSH terms: Perissodactyla/anatomy & histology*; Perissodactyla/physiology
  3. Zainal Zahari Z, Rosnina Y, Wahid H, Yap KC, Jainudeen MR
    Anim. Reprod. Sci., 2005 Feb;85(3-4):327-35.
    PMID: 15581515
    The Sumatran rhinoceros (Dicerorhinus sumatrensis) is on the verge of extinction in Malaysia. At the Sumatran rhinoceros Conservation Centre in Sungai Dusun, the reproductive behaviour of two female and two male rhinoceroses were studied for 8-10 months during attempts to breed them in captivity. Due to the paucity of scientific information on the reproductive biology of the Sumatran rhinoceros, this study was conducted to obtain information on the reproductive behaviour of this species. The male rhino was introduced to a female rhino in the morning for 1-2 h daily in order to observe for behavioural oestrus. Observations were made on the signs of oestrus and mating behaviour. Oestrus was determined by receptivity towards the male and lasted about 24 h. Common signs of oestrus were an increase in frequency of urine spraying, tail raising or swinging, anogenital and other contacts. Although the males exhibited mounting, the inability of the male to achieve intromission was poor. The study demonstrated that the pattern of courtship and copulation of the captive Sumatran rhinos were comparable with those of other rhino species, reported previously by other scientists and flehmen reflex was also exhibited by the male Sumatran rhinos. In a captive breeding programme, it is recommended that only an oestral female is introduced into a male enclosure due to the male solitary behaviour and to avoid serious injuries inflicted onto the females.
    Matched MeSH terms: Perissodactyla/physiology*
  4. Salleh A, Zainuddin ZZ, Tarmizi RMM, Yap CK, Jeng CR, Zamri-Saad M
    Animals (Basel), 2021 Apr 20;11(4).
    PMID: 33923894 DOI: 10.3390/ani11041173
    An adult female Sumatran rhinoceros was observed with a swelling in the left infraorbital region in March 2017. The swelling rapidly grew into a mass. A radiograph revealed a cystic radiolucent area in the left maxilla. In June 2017, the rhinoceros was euthanized. At necropsy, the infraorbital mass measured 21 cm × 30 cm. Samples of the infraorbital mass, left parotid gland, and left masseter muscle were collected for histopathology (Hematoxylin & Eosin, Von Kossa, Masson's trichrome, cytokeratin AE1/AE3, EMA, p53, and S-100). Numerous neoplastic epithelial cells showing pleomorphism and infiltration were observed. Islands of dentinoid material containing ghost cells and keratin pearls were observed with the aid of the two special histochemistry stains. Mitotic figures were rarely observed. All the neoplastic odontogenic cells and keratin pearls showed an intense positive stain for cytokeratin AE1/AE3, while some keratin pearls showed mild positive stains for S-100. All samples were negative for p53 and S-100 immunodetection. The mass was diagnosed as a dentinogenic ghost cell tumor.
    Matched MeSH terms: Perissodactyla
  5. Rovie-Ryan JJ, Zainuddin ZZ, Marni W, Ahmad AH, Ambu LN, Payne J
    Asian Pac J Trop Biomed, 2013 Feb;3(2):95-9.
    PMID: 23593586 DOI: 10.1016/S2221-1691(13)60031-3
    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly.
    Matched MeSH terms: Perissodactyla*
  6. Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, et al.
    Curr Biol, 2020 10 05;30(19):3871-3879.e7.
    PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
    Matched MeSH terms: Perissodactyla/genetics*
  7. Rayan DM, Mohamad SW, Dorward L, Aziz SA, Clements GR, Christopher WCT, et al.
    Integr Zool, 2012 Dec;7(4):373-380.
    PMID: 23253368 DOI: 10.1111/j.1749-4877.2012.00321.x
    The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework.
    Matched MeSH terms: Perissodactyla/physiology*
  8. Clements GR, Rayan DM, Aziz SA, Kawanishi K, Traeholt C, Magintan D, et al.
    Integr Zool, 2012 Dec;7(4):400-406.
    PMID: 23253371 DOI: 10.1111/j.1749-4877.2012.00314.x
    In 2008, the IUCN threat status of the Asian tapir (Tapirus indicus) was reclassified from 'vulnerable' to 'endangered'. The latest distribution map from the IUCN Red List suggests that the tapirs' native range is becoming increasingly fragmented in Peninsular Malaysia, but distribution data collected by local researchers suggest a more extensive geographical range. Here, we compile a database of 1261 tapir occurrence records within Peninsular Malaysia, and demonstrate that this species, indeed, has a much broader geographical range than the IUCN range map suggests. However, extreme spatial and temporal bias in these records limits their utility for conservation planning. Therefore, we used maximum entropy (MaxEnt) modeling to elucidate the potential extent of the Asian tapir's occurrence in Peninsular Malaysia while accounting for bias in existing distribution data. Our MaxEnt model predicted that the Asian tapir has a wider geographic range than our fine-scale data and the IUCN range map both suggest. Approximately 37% of Peninsular Malaysia contains potentially suitable tapir habitats. Our results justify a revision to the Asian tapir's extent of occurrence in the IUCN Red List. Furthermore, our modeling demonstrated that selectively logged forests encompass 45% of potentially suitable tapir habitats, underscoring the importance of these habitats for the conservation of this species in Peninsular Malaysia.
    Matched MeSH terms: Perissodactyla/physiology*
  9. Gonçalves DA Silva A, Campos-Arceiz A, Zavada MS
    Integr Zool, 2012 Dec;7(4):329-330.
    PMID: 23253364 DOI: 10.1111/1749-4877.12015
    Matched MeSH terms: Perissodactyla/physiology*
  10. Roth TL, Reinhart PR, Kroll JL
    J. Zoo Wildl. Med., 2017 09;48(3):645-658.
    PMID: 28920821 DOI: 10.1638/2017-0010.1
    The aim of this study was to determine if ferritin is a reliable biomarker of iron overload disorder (IOD) progression and hemochromatosis in the Sumatran rhinoceros (Dicerorhinus sumatrensis) by developing a species-specific ferritin assay and testing historically banked samples collected from rhinos that did and did not die of hemochromatosis. Ferritin extracted from Sumatran rhino liver tissue was used to generate antibodies for the Enzyme Immunoassay. Historically banked Sumatran rhino serum samples (n = 298) obtained from six rhinos in US zoos (n = 290); five rhinos at the Sumatran Rhino Conservation Centre in Sungai Dusun, Malaysia (n = 5); and two rhinos in Sabah, Malaysia (n = 3) were analyzed for ferritin concentrations. Across all US zoo samples, serum ferritin concentrations ranged from 348 to 7,071 ng/ml, with individual means ranging from 1,267 (n = 25) to 2,604 ng/ml (n = 36). The ferritin profiles were dynamic, and all rhinos exhibited spikes in ferritin above baseline during the sampling period. The rhino with the highest mean ferritin concentration did not die of hemochromatosis and exhibited only mild hemosiderosis postmortem. A reproductive female exhibited decreases and increases in serum ferritin concurrent with pregnant and nonpregnant states, respectively. Mean (±SD) serum ferritin concentration for Sumatran rhinos in Malaysia was high (4,904 ± 4,828 ng/ml) compared to that for US zoo rhinos (1,835 ± 495 ng/ml). However, those in Sabah had lower ferritin concentrations (1,025 ± 52.7 ng/ml) compared to those in Sungai Dusun (6,456 ± 4,941 ng/ml). In conclusion, Sumatran rhino serum ferritin concentrations are dynamic, and increases often are not associated with illness or hemochromatosis. Neither a specific pattern nor the individual's overall mean ferritin concentration can be used to accurately assess IOD progression or diagnose hemochromatosis in this rhino species.
    Matched MeSH terms: Perissodactyla/blood*
  11. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Perissodactyla
  12. Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, et al.
    Nature, 2019 10;574(7776):103-107.
    PMID: 31511700 DOI: 10.1038/s41586-019-1555-y
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
    Matched MeSH terms: Perissodactyla/classification*; Perissodactyla/genetics*; Perissodactyla/metabolism
  13. von Seth J, Dussex N, Díez-Del-Molino D, van der Valk T, Kutschera VE, Kierczak M, et al.
    Nat Commun, 2021 Apr 26;12(1):2393.
    PMID: 33896938 DOI: 10.1038/s41467-021-22386-8
    Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations.
    Matched MeSH terms: Perissodactyla/genetics*
  14. Mahmood T, Vu TT, Campos-Arceiz A, Akrim F, Andleeb S, Farooq M, et al.
    PeerJ, 2021;9:e10738.
    PMID: 33628635 DOI: 10.7717/peerj.10738
    Ecosystem functioning is dependent a lot on large mammals, which are, however, vulnerable and facing extinction risks due to human impacts mainly. Megafauna of Asia has been declining for a long, not only in numbers but also in their distribution ranges. In the current study, we collected information on past and current occurrence and distribution records of Asia's megafauna species. We reconstructed the historical distribution ranges of the six herbivores and four carnivores for comparison with their present ranges, to quantify spatially explicit levels of mega-defaunation. Results revealed that historically the selected megafauna species were more widely distributed than at current. Severe range contraction was observed for the Asiatic lion, three rhino species, Asian elephant, tigers, and tapirs. Defaunation maps generated have revealed the vanishing of megafauna from parts of the East, Southeast, and Southwest Asia, even some protected Areas losing up to eight out of ten megafaunal species. These defaunation maps can help develop future conservation policies, to save the remaining distribution ranges of large mammals.
    Matched MeSH terms: Perissodactyla
  15. Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE
    PLoS One, 2016;11(5):e0156318.
    PMID: 27232336 DOI: 10.1371/journal.pone.0156318
    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health monitoring and may provide insight into the progression of this and other insidious diseases.
    Matched MeSH terms: Perissodactyla/blood; Perissodactyla/metabolism*
  16. Lam SS, Ma NL, Peng W, Sonne C
    Science, 2020 May 29;368(6494):958.
    PMID: 32467384 DOI: 10.1126/science.abc2202
    Matched MeSH terms: Perissodactyla*
  17. Arumugam KA, Top MM, Ibrahim WNW, Buesching CD, Annavi G
    Sci Rep, 2020 03 05;10(1):4117.
    PMID: 32139707 DOI: 10.1038/s41598-020-60429-0
    Malayan tapirs are listed as endangered and are bred in captivity under governmental management. The success of captive breeding programs varies and the underlying causes are unclear. Here, we investigate how tapir reproduction is affected by previous breeding experience, enclosure type/size and visitor numbers so that appropriate steps can be taken to achieve self-sustaining captive populations. Data on social and reproductive behaviors were collected from six tapirs (three males, three females), from different breeding centers in Peninsular Malaysia for 18 weeks. Results revealed that social and reproductive behavior of both sexes was significantly influenced by social and environmental conditions. Larger enclosure size tended to increase social and reproductive behaviors, whereas high number of visitors reduced initial interaction between males and females. No specific breeding month was confirmed; however, reproductive behaviors were highest in April. Overall, this study contributes to a better understanding of the relationships between social and reproductive behaviors, and captive environments on Malayan tapirs. In future, frequency of sexual interactions should be monitored regularly to identify animals exhibiting below-average frequency and who might, therefore, be prone to reproductive difficulties.
    Matched MeSH terms: Perissodactyla/physiology*
  18. Lim QL, Tan YL, Ng WL, Yong CSY, Ismail A, Rovie-Ryan JJ, et al.
    Sci Rep, 2020 03 04;10(1):3973.
    PMID: 32132572 DOI: 10.1038/s41598-020-60552-y
    A molecular sexing method by polymerase chain reaction (PCR) amplification of a portion of the sex-determining region Y (SRY) and the zinc finger (ZF) gene, as well as six equine Y-chromosome-specific microsatellite markers, were tested in the Malayan tapir (Tapirus indicus). While the microsatellite markers did not yield any male-specific amplicons for sex-typing, the SRY/ZF marker system produced reliable molecular sexing results by accurately sex-typing 31 reference Malayan tapirs, using whole blood, dried blood spot (DBS), or tissue samples as materials for DNA extraction. The marker system was also tested on 16 faecal samples, and the results were in general consistent with the pre-determined sexes of the animals, despite some amplification failures. A preliminary estimation of wild Malayan tapir population sex ratio was estimated from the Wildlife Genomic Resource Bank (WGRB) database of the Malaysian Department of Wildlife and National Parks (PERHILITAN), zoos, and the Sungai Dusun Wildlife Conservation Centre (WCC), as well as from the results of molecular sexing 12 samples of unknown sex. The overall sex ratio favoured females, but the deviation from parity was statistically not significant when tested using the binomial test (p > 0.05), which may be due to reduced statistical power caused by small sample sizes.
    Matched MeSH terms: Perissodactyla/genetics*
  19. Hamdan A, Ab Latip MQ, Abu Hassim H, Mohd Noor MH, Tengku Azizan TRP, Mohamed Mustapha N, et al.
    Sci Rep, 2020 08 24;10(1):14105.
    PMID: 32839483 DOI: 10.1038/s41598-020-71047-1
    Mirror-induced behaviour has been described as a cognitive ability of an animal to self-direct their image in front of the mirror. Most animals when exposed to a mirror responded with a social interactive behaviour such as aggressiveness, exploratory and repetitive behaviour. The objective of this study is to determine the mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest, Malaysia. Wildlife species at the Royal Belum Rainforest were identified using a camera traps from pre-determined natural saltlick locations. Acrylic mirrors with steel frame were placed facing the two saltlicks (Sira Batu and Sira Tanah) and the camera traps with motion-detecting infrared sensor were placed at strategically hidden spot. The behavioural data of the animal response to the mirror were analysed using an ethogram procedure. Results showed that barking deer was the species showing the highest interaction in front of the mirror. Elephants displayed self-directed response through inspecting behaviour via usage of their trunk and legs while interacting to the mirror. Interestingly, the Malayan tapir showed startled behaviour during their interaction with the mirror. However, the absence of interactive behaviour of the Malayan tiger signalled a likelihood of a decreased social response behaviour. These results suggested that the ability to self-directed in front of the mirror is most likely related to the new approach to study the neural mechanism and its level of stimulus response in wildlife. In conclusion, research on mirror-induced self-directed behaviour in wildlife will have profound implications in understanding the cognitive ability of wildlife as an effort to enhance the management strategies and conservation.
    Matched MeSH terms: Perissodactyla/psychology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links