Displaying publications 1 - 20 of 507 in total

Abstract:
Sort:
  1. Biabanikhankahdani R, Alitheen NBM, Ho KL, Tan WS
    Sci Rep, 2016 11 24;6:37891.
    PMID: 27883070 DOI: 10.1038/srep37891
    Multifunctional nanocarriers harbouring specific targeting moieties and with pH-responsive properties offer great potential for targeted cancer therapy. Several synthetic drug carriers have been studied extensively as drug delivery systems but not much information is available on the application of virus-like nanoparticles (VLNPs) as multifunctional nanocarriers. Here, we describe the development of pH-responsive VLNPs, based on truncated hepatitis B virus core antigen (tHBcAg), displaying folic acid (FA) for controlled drug delivery. FA was conjugated to a pentadecapeptide containing nanoglue bound on tHBcAg nanoparticles to increase the specificity and efficacy of the drug delivery system. The tHBcAg nanoparticles loaded with doxorubicin (DOX) and polyacrylic acid (PAA) demonstrated a sustained drug release profile in vitro under tumour tissue conditions in a controlled manner and improved the uptake of DOX in colorectal cancer cells, leading to enhanced antitumour effects. This study demonstrated that DOX-PAA can be packaged into VLNPs without any modification of the DOX molecules, preserving the pharmacological activity of the loaded DOX. The nanoglue can easily be used to display a tumour-targeting molecule on the exterior surface of VLNPs and can bypass the laborious and time-consuming genetic engineering approaches.
    Matched MeSH terms: Antibiotics, Antineoplastic/pharmacokinetics; Doxorubicin/pharmacokinetics
  2. Bashir S, Teo YY, Naeem S, Ramesh S, Ramesh K
    PLoS One, 2017;12(7):e0179250.
    PMID: 28678803 DOI: 10.1371/journal.pone.0179250
    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug delivery carriers.
    Matched MeSH terms: Fluorouracil/pharmacokinetics; Immunosuppressive Agents/pharmacokinetics
  3. Mishra RK, Ramasamy K, Ahmad NA, Eshak Z, Majeed AB
    J Mater Sci Mater Med, 2014 Apr;25(4):999-1012.
    PMID: 24398912 DOI: 10.1007/s10856-013-5132-x
    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.
    Matched MeSH terms: Antineoplastic Agents/pharmacokinetics; Fluorouracil/pharmacokinetics
  4. Lee HB, Ho AS, Teo SH
    Cancer Chemother Pharmacol, 2006 Jul;58(1):91-8.
    PMID: 16211395
    Given that p53 is a tumor suppressor that plays a central role in the cellular response to DNA damage and that more than 50% of all cancers have mutated p53, the wider utility of photodynamic therapy (PDT) in the treatment of cancer will depend on an understanding of whether p53 status modulates response to PDT. In this study, we investigated the photosensitivity of isogenic cell lines that differ only in their p53 status to PDT using hypericin as the photosensitizer.
    Matched MeSH terms: Perylene/pharmacokinetics; Radiation-Sensitizing Agents/pharmacokinetics
  5. Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, et al.
    Int J Nanomedicine, 2013;8:2769-81.
    PMID: 23946649 DOI: 10.2147/IJN.S45313
    Zerumbone, a natural dietary lipophilic compound with low water solubility (1.296 mg/L at 25°C) was used in this investigation. The zerumbone was loaded into nanostructured lipid carriers using a hot, high-pressure homogenization technique. The physicochemical properties of the zerumbone-loaded nanostructured lipid carriers (ZER-NLC) were determined. The ZER-NLC particles had an average size of 52.68 ± 0.1 nm and a polydispersity index of 0.29 ± 0.004 μm. Transmission electron microscopy showed that the particles were spherical in shape. The zeta potential of the ZER-NLC was -25.03 ± 1.24 mV, entrapment efficiency was 99.03%, and drug loading was 7.92%. In vitro drug release of zerumbone from ZER-NLC was 46.7%, and for a pure zerumbone dispersion was 90.5% over 48 hours, following a zero equation. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human T-cell acute lymphoblastic leukemia (Jurkat) cells, the half maximal inhibitory concentration (IC50) of ZER-NLC was 5.64 ± 0.38 μg/mL, and for free zerumbone was 5.39 ± 0.43 μg/mL after 72 hours of treatment. This study strongly suggests that ZER-NLC have potential as a sustained-release drug carrier system for the treatment of leukemia.
    Matched MeSH terms: Antineoplastic Agents/pharmacokinetics; Drug Carriers/pharmacokinetics; Lipids/pharmacokinetics; Sesquiterpenes/pharmacokinetics
  6. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Antineoplastic Agents/pharmacokinetics
  7. Ong SG, Ding HJ
    Med J Malaysia, 2019 12;74(6):492-498.
    PMID: 31929474
    INTRODUCTION: Numerous studies have found that a majority of systemic lupus erythematosus (SLE) patients have suboptimal vitamin D levels. The major contributory factor is most likely attributed to sun protection measures in order to avoid SLE flares. The objectives of this research included the assessment of vitamin D status and its association with clinical manifestations of SLE, cardiovascular risk factors, autoantibodies, SLE disease activity and damage accrual.

    METHOD: This retrospective study involved SLE patients who attended the Rheumatology Clinic at the Hospital Kuala Lumpur from January 2014 to December 2016. Vitamin D was categorised as normal, insufficient or deficient, and the clinical variables were compared across vitamin D categories with chi-squared tests and Pearson correlation coefficient.

    RESULTS: We included 216 patients. The mean 25(OH)D concentration was 51.3(Standard Deviation; SD 14.8) nmol/L. Fifty (23.1%) patients had vitamin D deficiency, 120 (55.6%) had vitamin D insufficiency, while 46 (21.3%) had adequate vitamin D levels. There were statistically significant associations between vitamin D status and ethnic group, lupus nephritis and hypertension. No correlations were observed between vitamin D status with SLEDAI score (Pearson correlation coefficient -0.015, p=0.829) as well as SDI score (Pearson correlation coefficient -0.017, p=0.801).

    CONCLUSION: SLE patients should be screened for vitamin D concentrations and their levels optimised.

    Matched MeSH terms: Vitamin D/pharmacokinetics*; Vitamins/pharmacokinetics
  8. Gendeh BS, Gibb AG, Aziz NS, Kong N, Zahir ZM
    Otolaryngol Head Neck Surg, 1998 Apr;118(4):551-8.
    PMID: 9560111
    A prospective study was undertaken in 16 patients with chronic renal failure on continuous ambulatory peritoneal dialysis, with 22 episodes of peritonitis treated with vancomycin, a known ototoxic agent. Twelve patients had one episode each, and four had recurrent peritonitis. Each treatment course consisted of two infusions of vancomycin (30 mg/kg body weight) in 2 L of peritoneal dialysate administered at 6-day intervals. Serum vancomycin analyzed by enzyme immunoassay showed a mean trough level of 11.00 microg/ml on day 6 and mean serum levels of 33.8 and 38.6 microg/ml about 12 hours after administration on days 1 and 7, respectively. Similar levels, well within the therapeutic range, were encountered with repeated vancomycin therapy for recurrent episodes of peritonitis, suggesting that no changes occurred in the pharmacokinetic profile of the drug. Pure-tone audiometry, electronystagmography, and clinical assessment performed during each course of treatment showed no evidence of ototoxicity even on repeated courses of vancomycin therapy. The results suggest that vancomycin therapy when given in appropriate concentrations as a single therapeutic agent is both effective and safe. We believe, however, that vancomycin administered in combination with an aminoglycoside may produce ototoxic effects that may be greatly aggravated, possibly because of synergism.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics; Vancomycin/pharmacokinetics
  9. Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al.
    Clin Pharmacokinet, 2019 06;58(6):767-780.
    PMID: 30656565 DOI: 10.1007/s40262-018-0727-5
    BACKGROUND AND OBJECTIVES: Uncertainty exists regarding the optimal dosing regimen for vancomycin in different patient populations, leading to a plethora of subgroup-specific pharmacokinetic models and derived dosing regimens. We aimed to investigate whether a single model for vancomycin could be developed based on a broad dataset covering the extremes of patient characteristics. Furthermore, as a benchmark for current dosing recommendations, we evaluated and optimised the expected vancomycin exposure throughout life and for specific patient subgroups.

    METHODS: A pooled population-pharmacokinetic model was built in NONMEM based on data from 14 different studies in different patient populations. Steady-state exposure was simulated and compared across patient subgroups for two US Food and Drug Administration/European Medicines Agency-approved drug labels and optimised doses were derived.

    RESULTS: The final model uses postmenstrual age, weight and serum creatinine as covariates. A 35-year-old, 70-kg patient with a serum creatinine level of 0.83 mg dL-1 (73.4 µmol L-1) has a V1, V2, CL and Q2 of 42.9 L, 41.7 L, 4.10 L h-1 and 3.22 L h-1. Clearance matures with age, reaching 50% of the maximal value (5.31 L h-1 70 kg-1) at 46.4 weeks postmenstrual age then declines with age to 50% at 61.6 years. Current dosing guidelines failed to achieve satisfactory steady-state exposure across patient subgroups. After optimisation, increased doses for the Food and Drug Administration label achieve consistent target attainment with minimal (± 20%) risk of under- and over-dosing across patient subgroups.

    CONCLUSIONS: A population model was developed that is useful for further development of age and kidney function-stratified dosing regimens of vancomycin and for individualisation of treatment through therapeutic drug monitoring and Bayesian forecasting.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics*; Vancomycin/pharmacokinetics*
  10. Yeap LL, Lim KS, Lo YL, Bakar MZ, Tan CT
    Epileptic Disord, 2014 Sep;16(3):375-9.
    PMID: 25167568 DOI: 10.1684/epd.2014.0671
    Hearing loss has been reported with valproic acid (VPA) use. However, this is the first case of VPA-induced hearing loss that was tested and confirmed with a VPA rechallenge, supported by serial audiometry and pharmacokinetic modelling. A 39-year-old truck driver with temporal lobe epilepsy was treated with VPA at 400 mg, twice daily, and developed hearing loss after each dose, but recovered within three hours. Hearing loss fully resolved after VPA discontinuation. Audiometry performed five hours after VPA rechallenge showed significant improvement in hearing thresholds. Pharmacokinetic modelling during the VPA rechallenge showed that hearing loss occurred at a level below the therapeutic range. Brainstem auditory evoked potential at three months after VPA discontinuation showed bilateral conduction defect between the cochlear and superior olivary nucleus, supporting a pre-existing auditory deficit. VPA may cause temporary hearing threshold shift. Pre-existing auditory defect may be a risk factor for VPA-induced hearing loss. Caution should be taken while prescribing VPA to patients with pre-existing auditory deficit.
    Matched MeSH terms: Anticonvulsants/pharmacokinetics; Valproic Acid/pharmacokinetics
  11. Lai CS, Nair NK, Muniandy A, Mansor SM, Olliaro PL, Navaratnam V
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 Feb 15;877(5-6):558-62.
    PMID: 19147417 DOI: 10.1016/j.jchromb.2008.12.037
    With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile-acetic acid (0.05M adjusted to pH 5.2 with 1.00M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile-KH(2)PO(4) (pH 4.0, 0.05M) (11:89, v/v) as mobile phase at flow rate 1.00ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50-1400ng/ml plasma. The accuracies of the determination of all the analytes are 96.8-103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20ng/ml and limit of detection is 8ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS-AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS-AQ co-formulation.
    Matched MeSH terms: Amodiaquine/pharmacokinetics; Antimalarials/pharmacokinetics; Artemisinins/pharmacokinetics
  12. Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM
    AAPS PharmSciTech, 2010 Sep;11(3):1432-41.
    PMID: 20842539 DOI: 10.1208/s12249-010-9522-9
    Over the years, in vitro Franz diffusion experiments have evolved into one of the most important methods for researching transdermal drug administration. Unfortunately, this type of testing often yields permeation data that suffer from poor reproducibility. Moreover, this feature frequently occurs when synthetic membranes are used as barriers, in which case biological tissue-associated variability has been removed as an artefact of total variation. The objective of the current study was to evaluate the influence of a full-validation protocol on the performance of a tailor-made array of Franz diffusion cells (GlaxoSmithKline, Harlow, UK) available in our laboratory. To this end, ibuprofen was used as a model hydrophobic drug while synthetic membranes were used as barriers. The parameters investigated included Franz cell dimensions, stirring conditions, membrane type, membrane treatment, temperature regulation and sampling frequency. It was determined that validation dramatically reduced derived data variability as the coefficient of variation for steady-state ibuprofen permeation from a gel formulation was reduced from 25.7% to 5.3% (n = 6). Thus, validation and refinement of the protocol combined with improved operator training can greatly enhance reproducibility in Franz cell experimentation.
    Matched MeSH terms: Pharmacokinetics*
  13. Gan SH, Ismail R
    J Chromatogr B Biomed Sci Appl, 2001 Aug 15;759(2):325-35.
    PMID: 11499486
    An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3,500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36 +/- 12.53% and 93.52 +/- 7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.
    Matched MeSH terms: Analgesics, Opioid/pharmacokinetics; Tramadol/pharmacokinetics
  14. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Turk J Med Sci, 2015;45(4):913-8.
    PMID: 26422867
    BACKGROUND/AIM: VKORC1 and CYP2C9 genetic polymorphisms may not accurately predict warfarin dose requirements. We evaluated an existing warfarin dosing algorithm developed for Malaysian patients that was based only on VKORC1 and CYP2C9 genes.

    MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.

    RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.

    CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.

    Matched MeSH terms: Anticoagulants/pharmacokinetics
  15. Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al.
    Clin Pharmacokinet, 2023 Aug;62(8):1105-1116.
    PMID: 37300630 DOI: 10.1007/s40262-023-01265-z
    BACKGROUND AND OBJECTIVE: High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions.

    METHODS: C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation.

    RESULTS: Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%.

    CONCLUSION: C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics
  16. Nadeem M, Ahmad M, Saeed MA, Shaari A, Riaz S, Naseem S, et al.
    IET Nanobiotechnol, 2015 Jun;9(3):136-41.
    PMID: 26023157 DOI: 10.1049/iet-nbt.2014.0012
    Nanoparticles as solid colloidal particles are extensively studied and used as anticancer drug delivery agents because of their physical properties. This current research aims to prepare water base suspension of uncoated iron oxide nanoparticles and their biodistribution study to different organs, especially the brain, by using a single photon emission computed tomography gamma camera. The water-based suspension of iron oxide nanoparticles was synthesised by a reformed version of the co-precipitation method and labelled with Tc99m for intravenous injection. The nanoparticles were injected without surface modification. X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and transmission electron microscope (TEM) techniques were used for characterisation. Peaks of XRD and EDS indicate that the particles are magnetite and exist in aqueous suspension. The average diameter of iron oxide nanoparticles without any surface coating determined by TEM is 10 nm. These particles are capable of evading the reticuloendothelial system and can cross the blood-brain barrier in the rabbit. The labelling efficiency of iron oxide nanoparticles labelled with Tc99m is 85%, which is good for the biodistribution study. The sufficient amount of iron oxide nanoparticles concentration in the brain as compared with the surrounding soft tissues and their long blood retention time indicates that the water-based suspension of iron oxide nanoparticles may be an option for drug delivery into the brain.
    Matched MeSH terms: Technetium/pharmacokinetics*
  17. Tan CJ, Thang SP, Lam WW
    Med J Malaysia, 2016 04;71(2):69-71.
    PMID: 27326945
    Peritoneal radionuclide scan is an established imaging modality for evaluating peritoneopleural communications. In this case report, unusual mediastinal lymph node radiotracer uptake is seen in a patient with portal hypertension on peritoneal scintigraphy. This was suspected to be due to marked lymphatic enlargement from longstanding portal hypertension since childhood, permitting passage of the large Tc-99m MAA particle. The nodes were morphologically benign on CT. Mediastinal lymph node uptake on peritoneal scintigraphy is rare but should not raise undue clinical concern, particularly in a patient with chronic portal hypertension. Anatomic correlation with SPECT-CT can provide reassurance.
    Matched MeSH terms: Technetium Tc 99m Aggregated Albumin/pharmacokinetics*
  18. Karami A, Syed MA, Christianus A, Willett KL, Mazzeo JR, Courtenay SC
    J Hazard Mater, 2012 Jul 15;223-224:84-93.
    PMID: 22608400 DOI: 10.1016/j.jhazmat.2012.04.051
    In this study we sought to optimize recovery of fluorescent aromatic compounds (FACs) from the bile of African catfish (Clarias gariepinus) injected with 10mg/kg benzo[a]pyrene (BaP). Fractions of pooled bile were hydrolyzed, combined with ten volumes of methanol, ethanol, acetonitrile, or acetone, centrifuged and supernatants were analyzed by high-performance liquid chromatography with fluorescent detection (HPLC/FL). As well, to test whether FACs were being lost in solids from the centrifugation, pellets were resuspended, hydrolyzed and mixed with six volumes of the organic solvent that produced best FAC recovery from the supernatant, and subjected to HPLC/FL. Highest FAC concentrations were obtained with 2000μl and 1250μl acetone for supernatants and resuspended pellets respectively. FACs concentrations were negatively correlated with biliary protein content but were unaffected by addition of bovine serum albumin (BSA) followed by no incubation indicating that the presence of proteins in the biliary mixture does not simply interfere with detection of FACs. In another experiment, efficiency of acetone addition was compared to two different liquid-liquid extractions (L-LEs). Acetone additions provided significantly higher biliary FACs than the L-LE methods. The new two-stage bile preparation with acetone is an efficient, inexpensive and easily performed method.
    Matched MeSH terms: Benzo(a)pyrene/pharmacokinetics; Water Pollutants, Chemical/pharmacokinetics
  19. Hamid O, Tajuddin AA
    J Ocul Pharmacol Ther, 2000 Dec;16(6):565-9.
    PMID: 11132903
    The kinetics of topical triamterene penetration were estimated from the time-course measurements of triamterene (in Dyazide) concentrations in the anterior chamber of six rabbits (n=12, left and right eyes). The two-compartment model of Jones and Maurice (1) was fitted to the measurements. We found the apparent elimination rate constant oftriamterene A = 0.33 +/- 0.12 hr(-1), the apparent absorption rate constant of triamterene B = 2.68 +/- 0.55 hr(-1), the cornea-aqueous transfer coefficient in reference to the corneal volume of triamterene kc.ca = 0.28 +/- 0.05 hr(-1), the loss coefficient of triamterene from the anterior chamber ko = 0.43 +/- 0.16 hr(-1) and the amount of triamterene in the cornea at time zero Mo = 483 +/- 125 ng/ml. The mean of ko = 0.43 hr(-1) is significantly lower (p = 0.04% using ZTEST) than the lower limit of aqueous loss coefficient = 0.58 hr(-1) usually found in rabbits (2). We conclude that Dyazide lowers the aqueous flow rate in the positive direction, considering glaucoma treatment. Peak triamterene concentration in the anterior chamber was P = 120 +/- 32 ng/ml. Half-life for elimination from the aqueous humor was T1/2 = 1.84 +/- 0.65 hr (Mean +/- SD).
    Matched MeSH terms: Diuretics/pharmacokinetics*; Triamterene/pharmacokinetics*
  20. Roberts MS, Gafni RI, Brillante B, Guthrie LC, Streit J, Gash D, et al.
    J. Bone Miner. Res., 2019 09;34(9):1609-1618.
    PMID: 31063613 DOI: 10.1002/jbmr.3747
    Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by heterozygous, gain-of-function mutations of the calcium-sensing receptor gene (CAR). Individuals are hypocalcemic with inappropriately low parathyroid hormone (PTH) secretion and relative hypercalciuria. Calcilytics are negative allosteric modulators of the extracellular calcium receptor (CaR) and therefore may have therapeutic benefits in ADH1. Five adults with ADH1 due to four distinct CAR mutations received escalating doses of the calcilytic compound NPSP795 (SHP635) on 3 consecutive days. Pharmacokinetics, pharmacodynamics, efficacy, and safety were assessed. Parallel in vitro testing with subject CaR mutations assessed the effects of NPSP795 on cytoplasmic calcium concentrations (Ca2+i ), and ERK and p38MAPK phosphorylation. These effects were correlated with clinical responses to administration of NPSP795. NPSP795 increased plasma PTH levels in a concentration-dependent manner up to 129% above baseline (p = 0.013) at the highest exposure levels. Fractional excretion of calcium (FECa) trended down but not significantly so. Blood ionized calcium levels remained stable during NPSP795 infusion despite fasting, no calcitriol supplementation, and little calcium supplementation. NPSP795 was generally safe and well-tolerated. There was significant variability in response clinically across genotypes. In vitro, all mutant CaRs were half-maximally activated (EC50 ) at lower concentrations of extracellular calcium (Ca2+o ) compared to wild-type (WT) CaR; NPSP795 exposure increased the EC50 for all CaR activity readouts. However, the in vitro responses to NPSP795 did not correlate with any clinical parameters. NPSP795 increased plasma PTH levels in subjects with ADH1 in a dose-dependent manner, and thus, serves as proof-of-concept that calcilytics could be an effective treatment for ADH1. Albeit all mutations appear to be activating at the CaR, in vitro observations were not predictive of the in vivo phenotype or the response to calcilytics, suggesting that other parameters impact the response to the drug. © 2019 American Society for Bone and Mineral Research.
    Matched MeSH terms: Calcium Compounds/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links