Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Okpala CO, Bono G
    J Sci Food Agric, 2016 Mar 15;96(4):1231-40.
    PMID: 25866918 DOI: 10.1002/jsfa.7211
    The practicality of biometrics of seafood cannot be overemphasized, particularly for competent authorities of the shrimp industry. However, there is a paucity of relevant literature on the relationship between biometric and physicochemical indices of freshly harvested shrimp. This work therefore investigated the relationship between biometric (standard length (SL), total weight (TW) and condition factor (CF)) and physicochemical (moisture content, pH, titratable acidity, water activity, water retention index, colour values and fracturability) characteristics of freshly harvested Pacific white shrimp (Litopenaeus vannamei) obtained from three different farms. The relationships between these parameters were determined using correlation and regression analyses.
    Matched MeSH terms: Physicochemical Phenomena*
  2. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
    Matched MeSH terms: Physicochemical Phenomena
  3. Khan MN
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):160-79.
    PMID: 20673861 DOI: 10.1016/j.cis.2010.06.005
    A new method, based upon semi-empirical kinetic approach, for the determination of ion exchange constant for ion exchange processes occurring between counterions at the cationic micellar surface is described in this review article. Basically, the method involves a reaction kinetic probe which gives observed pseudo-first-order rate constants (k(obs)) for a nucleophilic substitution reaction between the nonionic and anionic reactants (R and S) in the presence of a constant concentration of both reactants as well as cationic micelles and varying concentrations of an inert inorganic or organic salt (MX). The observed data (k(obs), versus [MX]) fit satisfactorily (in terms of residual errors) to an empirical equation which could be derived from an equation explaining the mechanism of the reaction of the kinetic probe in terms of pseudophase micellar (PM) model coupled with another empirical equation. This (another) empirical equation explains the effect of [MX] on cationic micellar binding constant (K(S)) of the anionic reactant (say S) and gives an empirical constant, K(X/S). The magnitude of K(X/S) is the measure of the ability of X(-) to expel S(-) from a cationic micellar pseudophase to the bulk aqueous phase through ion exchange X(-)/S(-). The values of K(X/S) and K(Y/S) (where Y(-) is another inert counterion) give the ion exchange constant, K(X)(Y) (=K(X)/K(Y) where K(X) and K(Y) represent cationic micellar binding constants of X(-) and Y(-), respectively). The suitability of this method is demonstrated by the use of three different reaction kinetic probes and various MX.
    Matched MeSH terms: Physicochemical Phenomena
  4. Chan HT, Bhat R, Karim AA
    J Agric Food Chem, 2009 Jul 8;57(13):5965-70.
    PMID: 19489606 DOI: 10.1021/jf9008789
    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch.
    Matched MeSH terms: Physicochemical Phenomena
  5. Babji AS, Chin SY, Seri Chempaka MY, Alina AR
    Int J Food Sci Nutr, 1998 Sep;49(5):319-26.
    PMID: 10367000
    Four formulations were processed into frankfurters with different ratios of mechanically deboned chicken meat (MDCM) and cooked chicken skin (CCS) i.e. 80/0, 70/10, 60/20 and 50/30. The products were evaluated for proximate composition, cholesterol content, colour; 'L' value (lightness) and 'a' value (redness), percentage of cooking loss, physical measurements (shearforce-kgf and folding test), thiobarbituric acid value (TBA) and taste panel evaluation. The increment of CCS in the frankfurters increased the contents of moisture, ash, protein, fat, cholesterol, the lightness ('L' value) and redness ('a' value). After 3 months of frozen storage, the increment continued except for the moisture contents for formulations with 20 and 30% CCS. The lipid oxidation (TBA value) and cooking loss were lowered in formulations with CCS. After 3 months of frozen storage, TBA value decreased, while the cooking loss increased for all the formulations. The addition of CCS increased hardness of the frankfurters but affected folding ability, with formulation with 10% CCS scoring better grade. Sensory evaluation was carried out using 30 untrained panelists to evaluate aroma, colour, appearance, hardness, juiciness, chicken taste, oily taste, rancid taste and overall acceptance of the products. The addition of CCS in the frankfurters at 10 and 20% resulted in products with taste and texture that were acceptable after 3 months of frozen storage.
    Matched MeSH terms: Physicochemical Phenomena
  6. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Physicochemical Phenomena*
  7. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
    Matched MeSH terms: Physicochemical Phenomena/drug effects
  8. Bhat R, Karim AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:9-20.
    PMID: 19462319 DOI: 10.1080/09637480802241626
    Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
    Matched MeSH terms: Physicochemical Phenomena/radiation effects
  9. Chang TS, Yunus R, Rashid U, Choong TS, Awang Biak DR, Syam AM
    J Oleo Sci, 2015;64(2):143-51.
    PMID: 25748374 DOI: 10.5650/jos.ess14162
    Trimethylolpropane triesters are biodegradable synthetic lubricant base oil alternative to mineral oils, polyalphaolefins and diesters. These oils can be produced from trimethylolpropane (TMP) and fatty acid methyl esters via chemical or enzymatic catalyzed synthesis methods. In the present study, a commercial palm oil derived winter grade biodiesel (ME18) was evaluated as a viable and sustainable methyl ester source for the synthesis of high oleic trimethylolpropane triesters (HO-TMPTE). ME18 has fatty acid profile containing 86.8% oleic acid, 8.7% linoleic acid with the remaining minor concentration of palmitic acid, stearic acid and linolenic acid. It's high oleic property makes it superior to produce synthetic lubricant base oil that fulfills both the good low temperature property as well as good oxidative stability. The synthetic base oil produced had a viscosity of 44.3 mm(2)/s at 40°C meeting the needs for ISO 46 oils. It also exhibited an excellent viscosity index of 219 that is higher than some other commercial brands of trimethylolpropane trioleate. Properties of base oil such as cloud point, density, acid value, demulsibility and soap content were also examined. The oil was then used in the formulation of tapping oil and appraised in term of adaptability, stability and field test performance.
    Matched MeSH terms: Physicochemical Phenomena
  10. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(1):91-9.
    PMID: 25492234 DOI: 10.5650/jos.ess14161
    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.
    Matched MeSH terms: Physicochemical Phenomena
  11. Lourith N, Kanlayavattanakul M, Sucontphunt A, Ondee T
    J Oleo Sci, 2014;63(7):709-16.
    PMID: 24976614
    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.
    Matched MeSH terms: Physicochemical Phenomena
  12. Abdul Habib NS, Yunus R, Rashid U, Taufiq-Yap YH, Abidin ZZ, Syam AM, et al.
    J Oleo Sci, 2014;63(5):497-506.
    PMID: 24717547
    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
    Matched MeSH terms: Physicochemical Phenomena
  13. Siwayanan P, Aziz R, Bakar NA, Ya H, Jokiman R, Chelliapan S
    J Oleo Sci, 2014;63(6):585-92.
    PMID: 24829132
    Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).
    Matched MeSH terms: Physicochemical Phenomena
  14. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Physicochemical Phenomena
  15. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
    Matched MeSH terms: Physicochemical Phenomena
  16. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, et al.
    J Agric Food Chem, 2011 Aug 24;59(16):8733-41.
    PMID: 21726079 DOI: 10.1021/jf201314u
    A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
    Matched MeSH terms: Physicochemical Phenomena
  17. Cheong LZ, Tan CP, Long K, Affandi Yusoff MS, Lai OM
    J Sci Food Agric, 2010 Oct;90(13):2310-7.
    PMID: 20661900 DOI: 10.1002/jsfa.4088
    Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS).
    Matched MeSH terms: Physicochemical Phenomena
  18. Kuan YH, Bhat R, Senan C, Williams PA, Karim AA
    J Agric Food Chem, 2009 Oct 14;57(19):9154-9.
    PMID: 19757813 DOI: 10.1021/jf9015625
    The impact of ultraviolet (UV) irradiation on the physicochemical and functional properties of gum arabic was investigated. Gum arabic samples were exposed to UV irradiation for 30, 60, 90, and 120 min; gum arabic was also treated with formaldehyde for comparison. Molecular weight analysis using gel permeation chromatography indicated that no significant changes occurred on the molecular structure on the samples exposed to UV irradiation. Free amino group analysis indicated that mild UV irradiation (30 min) could induce cross-linking on gum arabic; this result was comparable with that of samples treated with formaldehyde. However, viscosity break down was observed for samples exposed to UV irradiation for longer times (90 and 120 min). All irradiated and formaldehyde-treated samples exhibited better emulsification properties than unirradiated samples. These results indicate that UV-irradiated gum arabic could be a better emulsifier than the native (unmodified) gum arabic and could be exploited commercially.
    Matched MeSH terms: Physicochemical Phenomena
  19. Huey SM, Hock CC, Lin SW
    J Food Sci, 2009 May-Jul;74(4):E177-83.
    PMID: 19490322 DOI: 10.1111/j.1750-3841.2009.01122.x
    The lipase-catalyzed interesterification of refined, bleached, deodorized palm olein with iodine value (IV) of 62 was studied in a pilot continuous packed-bed reactor operating at 65 degrees C. Sn-1,3 specific immobilized enzyme; Lipozyme TL IM (Thermomyces Lanuginosa) from Novozyme A/S was used in this study. The interesterification reaction produced fully solidified fats at ambient temperature due to the production of trisaturated triacylglycerols (TAG) (PPP and PPS, where P = palmitic acid, S = stearic acid). The reaction also increased the percentage of triunsaturated TAG (OLL, OLO, and OOO, where O = oleic acid, L = linoleic acid). The interesterified product was then dry fractionated at temperatures of 9, 12, 15, 18, and 21 degrees C to separate the saturated fats from the unsaturated. The results show that IV of olein increased when the fractionation temperature (T(FN)) decreased. The highest IV of olein was 72, obtained from T(FN) at 9 degrees C. After interesterification and laboratory-scale fractionation, the olein fractions contained higher unsaturation content ranging from 64.7% to 67.7% compared to the starting material (58.3%), while the saturation content was reduced from 41.7% to the range of 32.3% to 35.3%. The yields of these oleins were low with the range of 24.8% to 51.8% due to the limitation of the vacuum filtration. Ten kilograms of pilot-scale fractionation with membrane press filter was used to determine the exact olein yield. At T(FN) of 12 degrees C, 67.1% of olein with saturation content of 33.9% was obtained.
    Matched MeSH terms: Physicochemical Phenomena
  20. Fazilah A, Azemi MN, Karim AA, Norakma MN
    J Agric Food Chem, 2009 Feb 25;57(4):1527-31.
    PMID: 19166335 DOI: 10.1021/jf8028013
    Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B.
    Matched MeSH terms: Physicochemical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links