Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Nur Jannah Azman, Wan Mohd Rizlan Wan Idris, Alice Shanthi
    Jurnal Inovasi Malaysia, 2019;2(2):111-122.
    MyJurnal
    Circular 10/2016 issued by UiTM Vice-Chancellor’s office comprises a clear guideline for 2017 Strategic Budget Planning. The guidelines can help the Head of PTJ’s to plan and take necessary cost effective measures to reduce on utility expenditure especially to counter the rising monthly electricity bills related to the use of air conditioners on campuses. Looking at the figures drawn from the energy management office in UiTM Negeri Sembilan Branch, UiTM Kuala Pilah campus has spent an average of RM153, 028.88 monthly in 2016. As of August 2016, the cost of electricity consumption in UiTM Kuala Pilah has reached RM1,224,231.03. This amount has surpassed the overall approved allocation of RM 800,000.00 for 2016 electricity bill. In order to reduce spending and encourage saving, as well as responding to the ‘Energy Savings Campaign’ held at the campus level, various efforts have been taken at the departmental levels. One of the innovative products that came about from the campaign is the ‘Smartfan’ project pioneered by the Physics and Materials Science Unit. The main objective of this project is the production of a “smartfan” or a mini air conditioner which is a simple, cost-effective and an energy saving device. In addition, products and ideas from the campaign can be piloted and taken to innovative, inventions and design contests at national and international levels.
    Matched MeSH terms: Physics
  2. GLASS J
    Med J Malaya, 1958 Jun;12(4):622-36.
    PMID: 13577156
    Matched MeSH terms: Physics*
  3. Lau S, Ng KH, Abdul Aziz YF
    Br J Radiol, 2016 Oct;89(1066):20160258.
    PMID: 27452264 DOI: 10.1259/bjr.20160258
    OBJECTIVE: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise.

    METHODS: 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images.

    RESULTS: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p 

    Matched MeSH terms: Physics
  4. Latif WA, Ggha S
    Malays J Med Sci, 2019 Jan;26(1):147-156.
    PMID: 30914902 DOI: 10.21315/mjms2019.26.1.14
    Psychiatric disorders are prevalent throughout the world and causes heavy burden on mankind. Alone in US, billions of dollars are used for treatment purposes annually. Although advances in treatment strategies had witnessed recently, however the efficacy and overall outcome weren't quite promising. In neurobehavioural sciences, old problems survive through ages and with psychiatric disease, the phenomenon turns intensely complex. While our understanding of brain is mostly based on concepts of particle physics, its functions largely follow the principles of quantum mechanics. The current therapeutics relies on understanding of brain as a material entity that turns to be one of the chief reasons for the unsatisfactory therapeutic outcomes. Collectively, as mankind we are suffering huge loss due to the least effective treatment strategies. Even though we just begin to understand about how brain works, we also do not know much about quantum mechanics and how subatomic particles behave with quantum properties. Though it is apparent that quantum properties like particle and wave function duality coincides with the fundamental aspects of brain and mind duality, thus must share some common basis. Here in this article, an opinion is set that quantum mechanics in association with brain and more specifically psychiatry may take us towards a better understanding about brain, behaviour and how we approach towards treatment.
    Matched MeSH terms: Physics
  5. Zin, H. M.
    MyJurnal
    The Malaysian Association of Medical Physics (MAMP) was set up in the year 2000 to promote and further develop the field that was relatively new in Malaysia. The article briefly summarises key developments in medical physics since the first discovery of x-rays in 1895. The resulted rapid progress in the field was also highlighted and related to the pace of development in Malaysia. Key activities organised by MAMP were also addressed. The international practices related to the field and the profession were highlighted and compared to the current status in Malaysia. Although the field has progressed well in the country, there are several gaps identified to further improve the field and the profession in Malaysia.
    Matched MeSH terms: Physics
  6. Ng KH, Cheung KY, Hu YM, Inamura K, Kim HJ, Krisanachinda A, et al.
    Australas Phys Eng Sci Med, 2009 Dec;32(4):175-9.
    PMID: 20169835
    This document is the first of a series of policy statements being issued by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP). The document was developed by the AFOMP Professional Development Committee (PDC) and was endorsed for official release by AFOMP Council in 2006. The main purpose of the document was to give guidance to AFOMP member organizations on the role and responsibilities of clinical medical physicists. A definition of clinical medical physicist has also been provided. This document discusses the following topics: professional aspects of education and training; responsibilities of the clinical medical physicist; status and organization of the clinical medical physics service and the need for clinical medical physics service.
    Matched MeSH terms: Health Physics/education*
  7. Callen E, Scadron M
    Science, 1978 Jun 2;200(4345):1018-22.
    PMID: 17740674
    The Physics Interviewing Project assists graduate physics departments in evaluating foreign applicants. Supported by some 20 universities, two interviewers, both working scientists, travel abroad and interview students individually for about 1 hour each. Prospective teaching assistants are rated on physics knowledge, problem-solving ability, and English language proficiency. Ratings on all interviewees are sent to all supporting schools and other schools as requested. The Project aids able students from countries that have no physics Ph.D. programs (Indonesia, Malaysia, Thailand) to obtain assistantships and Ph.D.'s abroad, assists in the technological development of those countries, and helps U.S. schools in selecting the most promising foreign candidates. A similar program should be beneficial in other sciences.
    Matched MeSH terms: Physics
  8. Ng KH, Niroomand-Rad A, Hendee WR
    Med Phys, 2001 Dec;28(12):2391-3.
    PMID: 11797940
    Matched MeSH terms: Physics/trends*
  9. Ng Kh, Wong J
    Biomed Imaging Interv J, 2008 Apr;4(2):e21.
    PMID: 21614324 DOI: 10.2349/biij.4.2.21
    Informal discussion started in 1996 and the South East Asian Federation of Organizations for Medical Physics (SEAFOMP) was officially accepted as a regional chapter of the IOMP at the Chicago World Congress in 2000 with five member countries, namely Indonesia, Malaysia, Philippines, Singapore and Thailand. Professor Kwan-Hoong Ng served as the founding president until 2006. Brunei (2002) and Vietnam (2005) joined subsequently. We are very grateful to the founding members of SEAFOMP: Anchali Krisanachinda, Kwan-Hoong Ng, Agnette Peralta, Ratana Pirabul, Djarwani S Soejoko and Toh-Jui Wong.The objectives of SEAFOMP are to promote (i) co-operation and communication between medical physics organizations in the region; (ii) medical physics and related activities in the region; (iii) the advancement in status and standard of practice of the medical physics profession; (iv) to organize and/or sponsor international and regional conferences, meetings or courses; (v) to collaborate or affiliate with other scientific organizations.SEAFOMP has been organizing a series of congresses to promote scientific exchange and mutual support. The South East Asian Congress of Medical Physics (SEACOMP) series was held respectively in Kuala Lumpur (2001), Bangkok (2003), Kuala Lumpur (2004) and Jakarta (2006). The respective congress themes indicated the emphasis and status of development. The number of participants (countries in parentheses) was encouraging: 110 (17), 150 (16), 220 (23) and 126 (7).In honour of the late Professor John Cameron, an eponymous lecture was established. The inaugural John Cameron Lecture was delivered by Professor Willi Kalender in 2004. His lecture was titled "Recent Developments in Volume CT Scanning".
    Matched MeSH terms: Physics
  10. Kron T, Healy B, Ng KH
    Phys Med, 2016 Jul;32(7):883-8.
    PMID: 27320695 DOI: 10.1016/j.ejmp.2016.06.001
    OBJECTIVE: Our study aims to assess and track work load, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific Region over time.

    METHODS: A structured questionnaire was mailed in 2008, 2011 and 2014 to senior medical physicists representing 23 countries. The questionnaire covers 7 themes: education and training including certification; staffing; typical tasks; professional organisations; resources; research and teaching; job satisfaction.

    RESULTS: Across all surveys the response rate was >85% with the replies representing practice affecting more than half of the world's population. The expectation of ROMP qualifications (MSc and between 1 and 3years of clinical experience) has not changed much over the years. However, compared to 2008, the number of medical physicists in many countries has doubled. Formal professional certification is only available in a small number of countries. The number of experienced ROMPs is small in particular in low and middle income countries. The increase in staff numbers from 2008 to 2014 is matched by a similar increase in the number of treatment units which is accompanied by an increase in treatment complexity. Many ROMPs are required to work overtime and not many find time for research. Resource availability has only improved marginally and ROMPs still feel generally overworked, but professional recognition, while varying widely, appears to be improving slowly.

    CONCLUSION: While number of physicists and complexity of treatment techniques and technologies have increased significantly, ROMP practice remains essentially unchanged over the last 6years in the Asia Pacific Region.

    Matched MeSH terms: Health Physics/trends*
  11. Bradley DA, Nawi SNM, Khandaker MU, Almugren KS, Sani SFA
    Appl Radiat Isot, 2020 Jul;161:109168.
    PMID: 32321700 DOI: 10.1016/j.apradiso.2020.109168
    Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30-200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113-1.133 eV.
    Matched MeSH terms: Physics
  12. Razak Mohd Ali Lee, Khairul Anwar Mohamad, Katsuyoshi, Hamasaki
    MyJurnal
    We put attention on Intrinsic Josephson Junction (IJJ) to study the fundamental physic for device applications. Convenient self-flux method was used to grow BSCCO single crystals. We investigated the lid effect to examine the single crystal growth of high TC (Critical Temperature). We found that for the crystal growth with no lid, two stage transitions of TC ≅ 61 K and 77 K were observed. While for the crystal growth with lid, the BSCCO has TC ≅ 80K, ΔTC = 10K and approximately average size5x2mm 2 . When we increased weight of lid, the single crystal have increased to TC =80K, ΔTC = 4K and the typical size was ≅7x3mm 2 . TC and the crystal growth show a tendency to increase by the effect of the lid. From observed quasi-particle characteristics, c-axis direction changed from semiconductor to intrinsic Josephson characteristic with decreasing temperature.
    Matched MeSH terms: Physics
  13. Musa Mohd. Nordin
    MyJurnal
    Heralded by the revelation of the double helical structure of the DNA molecule in 1953, the 21st century is aptly designated the biotechnology century. The 20th century of physics, which saw the transformation of silicon into computing magic, was embraced with enthusiasm by virtually every household. However, unlike her predecessor, the same cannot be said about the advancements in biomedicine.
    Matched MeSH terms: Physics
  14. Ahmad Fadly Nurullah Rasedee, Mohammad Hasan Abdul Sathar, Norizarina Ishak, Irneza Ismail, Musab Sahrim, Nur Ainna Ramli, et al.
    MATEMATIKA, 2017;33(2):165-175.
    MyJurnal
    Real life phenomena found in various fields such as engineering, physics,
    biology and communication theory can be modeled as nonlinear higher order ordinary
    differential equations, particularly the Duffing oscillator. Analytical solutions for these
    differential equations can be time consuming whereas, conventional numerical solutions
    may lack accuracy. This research propose a block multistep method integrated with a
    variable order step size (VOS) algorithm for solving these Duffing oscillators directly.
    The proposed VOS Block method provides an alternative numerical solution by reducing
    computational cost (time) but without loss of accuracy. Numerical simulations
    are compared with known exact solutions for proof of accuracy and against current
    numerical methods for proof of efficiency (steps taken).
    Matched MeSH terms: Physics
  15. Ng KH, Wong JHD, Leong SS
    Phys Eng Sci Med, 2024 Mar;47(1):17-29.
    PMID: 38078996 DOI: 10.1007/s13246-023-01358-w
    Chronic kidney disease is a leading public health problem worldwide. The global prevalence of chronic kidney disease is nearly five hundred million people, with almost one million deaths worldwide. Estimated glomerular filtration rate, imaging such as conventional ultrasound, and histopathological findings are necessary as each technique provides specific information which, when taken together, may help to detect and arrest the development of chronic kidney disease, besides managing its adverse outcomes. However, estimated glomerular filtration rate measurements are hampered by substantial error margins while conventional ultrasound involves subjective assessment. Although histopathological assessment is the best tool for evaluating the severity of the renal pathology, it may lead to renal insufficiency and haemorrhage if complications occurred. Ultrasound shear wave elastography, an emerging imaging that quantifies tissue stiffness non-invasively has gained interest recently. This method applies acoustic force pulses to generate shear wave within the tissue that propagate perpendicular to the main ultrasound beam. By measuring the speed of shear wave propagation, the tissue stiffness is estimated. This paper reviews the literature and presents our combined experience and knowledge in renal shear wave elastography research. It discusses and highlights the confounding factors on shear wave elastography, current and future possibilities in ultrasound renal imaging and is not limited to new sophisticated techniques.
    Matched MeSH terms: Physics
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2020;80(8):752.
    PMID: 32852485 DOI: 10.1140/epjc/s10052-020-8168-3
    A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of

    137




    fb


    -
    1




    at a center-of-mass energy of

    13

    TeV

    , collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as

    2.1

    TeV

    for gluinos and

    0.9

    TeV

    for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.
    Matched MeSH terms: Physics
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):439.
    PMID: 28303081 DOI: 10.1140/epjc/s10052-016-4261-z
    A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13[Formula: see text] recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 [Formula: see text]. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a [Formula: see text] boson candidate, the number of jets, the number of [Formula: see text] quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680[Formula: see text], respectively, at the 95 % confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119[Formula: see text]) and two same-sign top quarks (1.7[Formula: see text]) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
    Matched MeSH terms: Physics
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
    Matched MeSH terms: Physics
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Jun 15;120(24):241801.
    PMID: 29956995 DOI: 10.1103/PhysRevLett.120.241801
    A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9  fb^{-1}, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy sqrt[s]=13  TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H→bb[over ¯]. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.
    Matched MeSH terms: Physics
  20. Anuar Alias, Ithnin Abdul Jalil, Tajuddin, W.A.
    MyJurnal
    String theory is currently considered as the leading candidate for a unified theory of physics combining the Standard Model of forces and particles with gravity which is best described by Einstein theory of General Relativity. Contrary to classical model of point particle, String theory proposes that matter, force, even space and time are composed of tiny vibrating strings. This paper is to elaborate on the correspondence between string states and quantum fields by initially constructing general time-dependent states from string basis states analogous to general timedependent super-positions of basis states for a point particle. From this derivation we can show that an equation emerges from the 'classical' Schrodinger equation that represents the Schrodinger equation in String theory. This is very interesting to investigate since the Schrodinger equation is at the core of Quantum Mechanics which is the foundation of Standard Model that is the pillar of Nuclear physics.
    Matched MeSH terms: Nuclear Physics; Physics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links