Displaying publications 1 - 20 of 2470 in total

Abstract:
Sort:
  1. Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MHA, Rukshana AH, et al.
    Nat Prod Res, 2019 May;33(10):1495-1499.
    PMID: 29281898 DOI: 10.1080/14786419.2017.1419224
    The aim of the study was to isolate digestive enzymes inhibitors from Mimosa pudica through a bioassay-guided fractionation approach. Repeated silica gel and sephadex LH 20 column chromatographies of bioactive fractions afforded stigmasterol, quercetin and avicularin as digestive enzymes inhibitors whose IC50 values as compared to acarbose (351.02 ± 1.46 μg mL-1) were found to be as 91.08 ± 1.54, 75.16 ± 0.92 and 481.7 ± 0.703 μg mL-1, respectively. In conclusion, M. pudica could be a good and safe source of digestive enzymes inhibitors for the management of diabetes in future.
    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/chemistry
  2. Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, et al.
    Pharm Biol, 2021 Dec;59(1):964-973.
    PMID: 34347568 DOI: 10.1080/13880209.2021.1948065
    CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.

    OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.

    MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.

    RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).

    DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.

    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/chemistry*
  3. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  4. Werner R
    Offentl Gesundheitswes, 1979 Jun;41(6):332-43.
    PMID: 223097
    Matched MeSH terms: Plant Extracts/therapeutic use
  5. Matsuura S, Kunii T, Iinuma M
    Yakugaku Zasshi, 1973 Nov;93(11):1517-9.
    PMID: 4798539
    Matched MeSH terms: Plant Extracts/analysis
  6. Habib U, Cecilia DW, Maizatul SS
    Se Pu, 2017 Jun 08;35(6):656-664.
    PMID: 29048794 DOI: 10.3724/SP.J.1123.2017.02002
    Ionic liquids (ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature, sonication time, and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed, 1-ethyl-3-methylimidazolium acetate was the most effective, providing a 9.55% yield of the essential oil under optimum conditions (70 ℃, 25 min, IL:hexane ratio of 7:10 (v/v), particle size 60-80 mesh). The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its low viscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.
    Matched MeSH terms: Plant Extracts/chemistry*
  7. Hamid A, Ibrahim FW, Ming TH, Nasrom MN, Eusoff N, Husain K, et al.
    BMC Complement Altern Med, 2018 Mar 20;18(1):101.
    PMID: 29558939 DOI: 10.1186/s12906-018-2161-5
    BACKGROUND: Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats.

    METHOD: Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis.

    RESULT: Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p 

    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  8. Rasli NI, Basri H, Harun Z
    Heliyon, 2020 Jan;6(1):e03156.
    PMID: 32042952 DOI: 10.1016/j.heliyon.2020.e03156
    Zinc oxide (ZnO) was biosynthesised from aloe vera plant extract. The aloe vera plant extract was used as a reducing agent in biosynthesis process. Green synthesis method was proposed because it is cost effective and environmentally friendly. ZnO was characterised using SEM, EDX, FTIR, and XRD analyses. The antibacterial property was tested against Escherichia coli. The effects of aloe vera volume (2-50) mL, precursor concentration (0.001-0.300) M, reaction time (20 min-48 h), and temperature of the reaction (26-200) °C on ZnO characteristics were investigated and screened using a two-level factorial method. Based on the observation and ANOVA analysis result, precursor concentration was the only significant parameter that affected the production of the ZnO nanoparticles (NPs). The EDX analysis proved the presence of ZnO while the SEM analysis confirmed the average size of ZnO particle size was in the range of (18-618) μm with a rod-shape appearance. The XRD analysis showed that the average crystallite size was 0.452 μm and it was in the hexagonal phase. It was also proven to have antibacterial property against E. coli.
    Matched MeSH terms: Plant Extracts
  9. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK
    Biomed Pharmacother, 2016 Oct;83:1303-1310.
    PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052
    Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/therapeutic use*
  10. Ma J, Ma NL, Zhang D, Wu N, Liu X, Meng L, et al.
    Chemosphere, 2022 Apr;292:133345.
    PMID: 34922964 DOI: 10.1016/j.chemosphere.2021.133345
    Zero waste multistage utilization of biomass from Ginkgo biloba branches (GBBs) was achieved through extraction of bioactive components, analysis of antioxidant and antibacterial activities, preparation and composition of pyrolyzate, adsorption and reuse of modified biochar. The results showed that GBBs had abundant bioactive components for potential application in the industry of food, chemical raw materials and biomedicine. Especially, the bioactive compounds in acetone extract (10 mg/mL) of GBBs identified by DPPH and ABTS had free radical scavenging abilities of 92.28% and 98.18%, respectively, which are equivalent to Vitamin C used as an antioxidant in food additives. Fourier Transform Infrared and X-Ray Diffraction analysis showed that carboxymethyl cellulose (CMC) and magnetic Fe3O4 were successfully incorporated into raw biochar (RB) to form CMC-Fe3O4-RB nanomaterial. Scanning electron microscopy and X-Ray Diffraction spectroscopy displayed Fe, C, and O existed on the surface of CMC-Fe3O4-RB. Compared with RB, CMC-Fe3O4-RB had a larger specific surface area, pore volume and pore size. Meanwhile, nanomagnetic CMC-Fe3O4-RB solved the problem of agglomeration in traditional magnetized biochar production, and improved the adsorption capacity of Pb2+, which was 29.90% higher than that of RB by ICP-OES. Further, the Pb2+ (10 mg/L) adsorption capacity of CMC-Fe3O4-RB reached the highest level in 2 h at the dosage of 0.01 g/L, and remained stable at 52.987 mg/g after five cycles of adsorption and desorption. This research aided in the creation of a strategy for GBBs zero waste multistage usage and a circular economic model for GBBs industry development, which can be promoted and applied to the fields of food industry and environment improvement.
    Matched MeSH terms: Plant Extracts
  11. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Plant Extracts/pharmacology*
  12. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Plant Extracts/toxicity; Plant Extracts/chemistry
  13. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*
  14. Aladdin NA, Husain K, Jalil J, Sabandar CW, Jamal JA
    BMC Complement Med Ther, 2020 Oct 27;20(1):324.
    PMID: 33109178 DOI: 10.1186/s12906-020-03119-8
    BACKGROUND: In traditional Malay medicine, Marantodes pumilum (Blume) Kuntze (family Primulaceae) is commonly used by women to treat parturition, flatulence, dysentery, dysmenorrhea, gonorrhea, and bone diseases. Preliminary screening of some Primulaceae species showed that they possess xanthine oxidase inhibitory activity. Thus, this study aimed to investigate the xanthine oxidase inhibitory activity of three varieties of M. pumilum and their phytochemical compounds.

    METHOD: Dichloromethane, methanol, and water extracts of the leaves and roots of M. pumilum var. alata, M. pumilum var. pumila, and M. pumilum var. lanceolata were tested using an in vitro xanthine oxidase inhibitory assay. Bioassay-guided fractionation and isolation were carried out on the most active extract using chromatographic techniques. The structures of the isolated compounds were determined using spectroscopic techniques.

    RESULTS: The most active dichloromethane extract of M. pumilum var. pumila leaves (IC50 = 161.6 μg/mL) yielded one new compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), and five known compounds, viz. ardisiaquinone A (2), maesanin (3), stigmasterol (4), tetracosane (5), and margaric acid (6). The new compound was found to be the most active xanthine oxidase inhibitor with an IC50 value of 0.66 ± 0.01 μg/mL, which was not significantly different (p > 0.05) from that of the positive control, allopurinol (IC50 = 0.24 ± 0.00 μg/mL).

    CONCLUSION: This study suggests that the new compound 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), which was isolated from the dichloromethane extract of M. pumilum var. pumila leaves, could be a potential xanthine oxidase inhibitor.

    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry*
  15. Abdulhafiz F, Mohammed A, Kayat F, Bhaskar M, Hamzah Z, Podapati SK, et al.
    Molecules, 2020 Jun 08;25(11).
    PMID: 32521624 DOI: 10.3390/molecules25112658
    Alocasia longiloba, locally known as 'Keladi Candik', has been used traditionally to treat wounds, furuncle and joint inflammations. A. longiloba can be a new source of herbal medicine against hyperuricemia by inhibiting the activity of xanthine oxidase enzyme, the enzyme which is responsible for the development of hyperuricemia in human. Existing xanthine oxidase inhibitors (XOI drugs) show several side effects on gout patients. Therefore, an alternative herbal medicine from plants, with high therapeutic property and free of side effects, are greatly needed. This study was conducted to evaluate XO inhibitory activity, chemical composition, antioxidant activity and GC-MS profile of A. longiloba. Our results showed that ethanolic petiole extract exhibited the highest XO inhibitory activity (70.40 ± 0.05%) with IC50 value of 42.71 μg/mL, followed by ethanolic fruit extracts (61.44 ± 1.24%) with the IC50 value of 51.32 μg/mL. In a parallel study, the phytochemical analysis showed the presence of alkaloid, flavonoid, terpenoids, glycoside and saponin in petiole and fruit extracts, as well as higher total phenolic and flavonoid contents and strong scavenging activity on DPPH and ABTS antioxidant assay. The GC-MS analysis of fruit and petiole extracts revealed the presence of various compounds belonging to different chemical nature, among them are limonen-6-ol, α-DGlucopyranoside, paromomycin, aziridine, phenol, Heptatriacotanol, Phen-1,2,3-dimethyl and Betulin found in ethanolic fruit extract, and Phen-1,4-diol,2,3-dimethyl-, 1-Ethynyl-3,trans(1,1-dimethylethyl), Phenol,2,6-dimethoxy-4-(2-propenyl)- and 7-Methyl-Z-tetradecen-1-olacetate found in ethanolic petiole extract. Some compounds were documented as potent anti-inflammatory and arthritis related diseases by other researchers. In this study, the efficiency of solvents to extract bioactives was found to be ethanol > water, methanol > hexane > chloroform. Together, our results suggest the prospective utilization of fruit and petiole of A. longiloba to inhibit the activity of XO enzyme.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  16. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Plant Extracts/pharmacology*
  17. Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S
    EXCLI J, 2015;14:385-93.
    PMID: 27004048 DOI: 10.17179/excli2014-697
    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.
    Matched MeSH terms: Plant Extracts
  18. Sasidharan S, Nilawatyi R, Xavier R, Latha LY, Amala R
    Molecules, 2010 Apr 30;15(5):3186-99.
    PMID: 20657471 DOI: 10.3390/molecules15053186
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeis guineensis Jacq (Arecaceae) is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant.

    AIM OF THE STUDY: To investigate the effects of E. guineensis leaf on wound healing activity in rats.

    METHODS: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups.

    RESULTS: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count.

    CONCLUSIONS: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use*; Plant Extracts/chemistry
  19. Shetty S, Udupa S, Udupa L, Somayaji N
    Indian J. Physiol. Pharmacol., 2006 Apr-Jun;50(2):163-8.
    PMID: 17051736
    The present study was performed to evaluate the wound healing and antioxidant effect of aqueous extract of Ocimum sanctum Linn. (O. sanctum) in rats. Albino rats of either sex were divided into 2 groups. Group I: Wounded control rats; Group II: Wounded rats administered O. sanctum aqueous extract. Wound breaking strength in incision wound model, epithelization period and percent wound contraction in excision wound model were studied. Using dead space wound model, granulation tissue breaking strength, granulation tissue dry weight, hydoxyproline level in dry granulation tissue, superoxide dismutase (SOD) and catalase levels in wet granulation tissue were estimated in both the groups. Increased wound breaking strength, decreased epithelization period, increased percent wound contraction, increased granulation tissue weight and hydroxyproline concentrations were observed. The increased activity of antioxidant enzymes such as SOD, catalase level in extract treated group compared to controls. Granulation tissue was subjected to histopathological examination to determine the pattern of lay-down for collagen using Haematoxylin and Eosin stains which confirm the results. Owing to wound healing and antioxidant activities, O. sanctum may be useful in the management of abnormal healing such as keloids and hypertrophic scars.
    Matched MeSH terms: Plant Extracts/pharmacology*
  20. Sasidharan S, Logeswaran S, Latha LY
    Int J Mol Sci, 2012;13(1):336-47.
    PMID: 22312255 DOI: 10.3390/ijms13010336
    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links