Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  2. Haniffa MACM, Illias HA, Chee CY, Ibrahim S, Sandu V, Chuah CH
    ACS Omega, 2020 May 12;5(18):10315-10326.
    PMID: 32426588 DOI: 10.1021/acsomega.9b04388
    Hybrid bionanocomposite coating systems (HBCSs) are green polymer materials consisting of an interface between a coating matrix and nanoparticles. The coating matrix was prepared by using a nonisocyanate poly(hydroxyl urethane) (NIPHU) prepolymer crosslinked via 1,3-diaminopropane and epoxidized Jatropha curcas oil. TEMPO-oxidized cellulose nanoparticles (TARC) were prepared from microcrystalline cellulose, and (3-aminopropyl)trimethoxysilane (APTMS)-coated ZnO nanoparticles (APTMS-ZnO) and their suspensions were synthesized separately. The suspensions at different weight ratios were incorporated into the coating matrix to prepare a series of HBCSs. FT-IR, 1H-NMR, 13C-NMR, XRD, SEM, and TEM were used to confirm the chemical structures, morphology, and elements of the coating matrix, nanomaterials, and HBCSs. The thermomechanical properties of the HBCSs were investigated by TGA-DTG and pencil hardness analyses. The UV and IR absorption spectra of the HBCSs were obtained using UV-vis spectroscopy and FTIR spectroscopy, respectively. The HBCSs exhibited good thermal stability at about 200 °C. The degradation temperature at 5% mass loss of all samples was over around 280 °C. The HBCSs exhibited excellent UV block and IR active properties with a stoichiometric ratio of the NIPHU prepolymer and EJCO of 1:1 (wt/wt) containing 5 wt % TARC and 15 wt % APTMS-ZnO nanoparticles. It was observed that the sample with 5 wt % TARC and 15 wt % APTMS-ZnO (HBCS-2) exhibited a uniform crosslinking and reinforcement network with a Tonset of 282 °C. This sample has successfully achieved good coating hardness and excellent UV and IR absorption.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  3. Abdullah NR, Sharif F, Azizan NH, Hafidz IFM, Supramani S, Usuldin SRA, et al.
    AIMS Microbiol, 2020;6(4):379-400.
    PMID: 33364534 DOI: 10.3934/microbiol.2020023
    The pellet morphology and diameter range (DR) of Ganoderma lucidum were observed in a repeated-batch fermentation (RBF) for the trio total production of biomass, exopolysaccharide (EPS) and endopolysaccharide (ENS). Two factors were involved in RBF; broth replacement ratio (BRR: 60%, 75% and 90%) and broth replacement time point (BRTP: log, transition and stationary phase) in days. In RBF, 34.31 g/L of biomass favoured small-compact pellets with DR of 20.67 µm< d < 24.00 µm (75% BRR, day 11 of BRTP). EPS production of 4.34 g/L was prone to ovoid-starburst pellets with DR of 34.33 µm< d <35.67 µm (75% BRR, day 13 of BRTP). Meanwhile, the highest 2.43 g/L of ENS production favoured large-hollow pellets with DR of 34.00 µm< d < 38.67 µm (90% BRR, day 13 of BRTP). In addition, RBF successfully shortened the biomass-EPS-ENS fermentation period (31, 33 and 35 days) from batch to 5 days, in seven consecutive cycles of RBF. In a FTIR detection, β-glucan (BG) from EPS and ENS extracts were associated with β-glycosidic linkages (2925 cm-1, 1635 cm-1, 1077 cm-1, 920 cm-1 and 800 cm-1 wavelengths) with similar 1H NMR spectral behaviour (4.58, 3.87 and 3.81 ppm). Meanwhile, 4 mg/L of BG gave negative cytotoxic effects on normal gingival cell line (hGF) but induced antiproliferation (IC50 = 0.23 mg/mL) against cancerous oral Asian cellosaurus cell line (ORL-48). Together, this study proved that G. lucidum mycelial pellets could withstand seven cycles of long fermentation condition and possessed anti-oral cancer beta-glucan, which suits large-scale natural drug fermentation.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  4. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  5. Piersson AD, Mohamad M, Rajab F, Suppiah S
    Acad Radiol, 2021 10;28(10):1447-1463.
    PMID: 32651050 DOI: 10.1016/j.acra.2020.06.006
    BACKGROUND: There is compelling evidence that neurochemical changes measured by proton magnetic resonance spectroscopy (1H-MRS) occur at different phases of Alzheimer's disease (AD). However, the extent to which these neurochemical changes are associated with validated AD biomarkers and/or apolipoprotein (APOE) ε4 is yet to be established.

    OBJECTIVE: This systematic review analyzed the available evidence on (1) neurochemical changes; and (2) the relations between brain metabolite and validated cerebrospinal fluid biomarkers, and/or APOE in AD.

    METHODS: PubMed, Cochrane, Scopus, and gray literature were systematically screened for studies deemed fit for the purpose of the current systematic review.

    RESULTS: Twenty four articles met the inclusion criteria. Decreased levels of N-acetyl aspartate (NAA), NAA/(creatine) Cr, and NAA/(myo-inositol) ml, and increased ml, ml/Cr, Cho (choline)/Cr, and ml/NAA were found in the posterior cingulate cortex/precuneus. Increased ml is associated with increased tau levels, reduced NAA/Cr is associated with increased tau. ml/Cr is negatively correlated with Aβ42, and ml/Cr is positively correlated with t-tau. NAA and glutathione levels are reduced in APOE ε4 carriers. APOE ε4 exerts no modulatory effect on NAA/Cr. There is interaction between APOE ε4, Aβ42, and ml/Cr.

    CONCLUSION: NAA, ml, NAA/Cr, NAA/ml and ml/Cr may be potentially useful biomarkers that may highlight functional changes in the clinical stages of AD. The combinations of ml and tau, NAA/Cr and Aβ42, and NAA/Cr and tau may support the diagnostic process of differentiating MCI/AD from healthy individuals. Large, longitudinal studies are required to clarify the effect of APOE ε4 on brain metabolites.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  6. Veeramuthu V, Seow P, Narayanan V, Wong JHD, Tan LK, Hernowo AT, et al.
    Acad Radiol, 2018 09;25(9):1167-1177.
    PMID: 29449141 DOI: 10.1016/j.acra.2018.01.005
    RATIONALE AND OBJECTIVES: Magnetic resonance spectroscopy is a noninvasive imaging technique that allows for reliable assessment of microscopic changes in brain cytoarchitecture, neuronal injuries, and neurochemical changes resultant from traumatic insults. We aimed to evaluate the acute alteration of neurometabolites in complicated and uncomplicated mild traumatic brain injury (mTBI) patients in comparison to control subjects using proton magnetic resonance spectroscopy (1H magnetic resonance spectroscopy).

    MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale.

    RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P 

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy*
  7. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, et al.
    Ann Neurol, 2021 03;89(3):546-559.
    PMID: 33274480 DOI: 10.1002/ana.25982
    OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance.

    METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.

    RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.

    INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  8. Azam AA, Pariyani R, Ismail IS, Ismail A, Khatib A, Abas F, et al.
    BMC Complement Altern Med, 2017 May 25;17(1):278.
    PMID: 28545435 DOI: 10.1186/s12906-017-1777-1
    BACKGROUND: Orthosiphon stamineus (OS) is a herb known in ethnomedicine for treating diabetes mellitus (DM). In this study, a (1)H NMR based urine metabolomics tool has been used for the first time to identify the metabolic protective mechanism of OS in DM using Streptozotocin (STZ) induced experimental model in rats.

    METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.

    RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.

    CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  9. Al-Zuaidy MH, Mumtaz MW, Hamid AA, Ismail A, Mohamed S, Razis AFA
    BMC Complement Altern Med, 2017 Jul 10;17(1):359.
    PMID: 28693595 DOI: 10.1186/s12906-017-1849-2
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by continuous hyperglycemia associated with insulin resistance and /or reduced insulin secretion. There is an emerging trend regarding the use of medicinal plants for the treatment of diabetes mellitus. Melicope lunu-ankenda (ML) is one of the Melicope species belonging to the family Rutaceae. In traditional medicines, its leaves and flowers are known to exhibit prodigious health benefits. The present study aimed at investigating anti-diabetic effect of Melicope lunu-ankenda (ML) leaves extract.

    METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways.

    RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.

    CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  10. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  11. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  12. Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3624-35.
    PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002
    Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  13. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  14. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Ur Rehman A, et al.
    Bioorg Chem, 2015 Feb;58:81-7.
    PMID: 25528720 DOI: 10.1016/j.bioorg.2014.12.001
    A new series of triazinoindole analogs 1-11 were synthesized, characterized by EI-MS and (1)H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46±0.008 and 312.79±0.06 μM when compared with the standard acarbose (IC50, 38.25±0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46±0.008, 37.78±0.05, 28.91±0.0, 38.12±0.04, 37.43±0.03, 36.89±0.06 and 37.11±0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  15. Rahim F, Zaman K, Ullah H, Taha M, Wadood A, Javed MT, et al.
    Bioorg Chem, 2015 Dec;63:123-31.
    PMID: 26520885 DOI: 10.1016/j.bioorg.2015.10.005
    4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  16. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F, et al.
    Bioorg Chem, 2015 Dec;63:36-44.
    PMID: 26432614 DOI: 10.1016/j.bioorg.2015.09.004
    Biscoumarin analogs 1-18 have been synthesized, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5±0.39 and 104.62±0.3μM when compared with standard acarbose having IC50 value 774.5±1.94μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1-18 are new. Our synthesized compounds can further be studied to developed lead compounds.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  17. Athar Abbasi M, Raza H, Aziz-Ur-Rehman, Zahra Siddiqui S, Adnan Ali Shah S, Hassan M, et al.
    Bioorg Chem, 2019 03;83:63-75.
    PMID: 30342387 DOI: 10.1016/j.bioorg.2018.10.018
    Present work aimed to synthesize some unique bi-heterocyclic benzamides as lead compounds for the in vitro inhibition of urease enzyme, followed by in silico studies. These targeted benzamides were synthesized in good yields through a multi-step protocol and their structures were confirmed by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening results showed that most of the ligands exhibited good inhibitory potentials against the urease. Chemo-informatics analysis envisaged that all these compounds obeyed the Lipinski's rule. Molecular docking results showed that 7h exhibited good binding energy value (-8.40 kcal/mol) and was bound within the active region of urease enzyme. From the present investigation, it was inferred that some of these potent urease inhibitors might serve as novel templates in drug designing.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  18. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  19. Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, et al.
    Bioprocess Biosyst Eng, 2020 Jul;43(7):1153-1169.
    PMID: 32095989 DOI: 10.1007/s00449-020-02311-x
    This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  20. Yiin CL, Ho S, Yusup S, Quitain AT, Chan YH, Loy ACM, et al.
    Bioresour Technol, 2019 Oct;290:121797.
    PMID: 31327691 DOI: 10.1016/j.biortech.2019.121797
    The aim of this work was to recover the cellulose fibers from EFB using low-transition-temperature-mixtures (LTTMs) as a green delignification approach. The hydrogen bonding of LTTMs observed in 1H NMR tends to disrupt the three-dimensional structure of lignin and further remove the lignin from EFB. Delignification process of EFB strands and EFB powder were performed using standard l-malic acid and cactus malic acid-LTTMs. The recovered cactus malic acid-LTTMs showed higher glucose concentration of 8.07 mg/mL than the recovered l-malic acid LTTMs (4.15 mg/mL). This implies that cactus malic acid-LTTMs had higher delignification efficiency which led to higher amount of cellulose hydrolyzed into glucose. The cactus malic acid-LTTMs-delignified EFB was the most feasible fibers for making paper due to its lowest kappa number of 69.84. The LTTMs-delignified EFB has great potential to be used for making specialty papers in pulp and paper industry.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links