Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Zainal N, Mohamed N, Idris R
    Sains Malaysiana, 2013;42:481-485.
    In this work, epoxidized natural rubber 50 (ENR-50) has been used as a host polymer for the preparation of electrolyte system. Attenuated total reflection-fourier transform infrared spectroscopic analyses showed the presence of lithium saltENR interactions. The glass transition temperature displayed an increasing trend with the increase in salt concentration indicating that the ionic conductivity was not influenced by segmental motion of the ENR-50 chains. The increase in
    glass transition temperature with the addition of salt was due to the formation of transient cross-linking between ENR-50 chains via the coordinated interaction between ENR-50 chains and salt. The highest room temperature ionic conductivity obtained was in the order of 10-5 S cm-1 for the film containing 50 wt% of lithium salt. The ionic conductivity of this electrolyte system increased with increasing temperature and obeyed the Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with salt concentration could also be correlated to the charge carriers concentration and/or migration rate of charge carriers.
    Matched MeSH terms: Rubber
  2. Zahari R, Halimoon N, Ahmad MF, Ling SK
    Int J Anal Chem, 2018;2018:8150610.
    PMID: 29692811 DOI: 10.1155/2018/8150610
    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.
    Matched MeSH terms: Rubber
  3. Yusof Said M, Goh Tin Kay
    Med J Malaysia, 1973 Sep;28(1):52-4.
    PMID: 4273787
    Matched MeSH terms: Rubber*
  4. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Rubber/chemistry*
  5. Yip E, Cacioli P
    J Allergy Clin Immunol, 2002 Aug;110(2 Suppl):S3-14.
    PMID: 12170237 DOI: 10.1067/mai.2002.124499
    Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content.
    Matched MeSH terms: Rubber*
  6. Yew GY, Tham TC, Show PL, Ho YC, Ong SK, Law CL, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):1-28.
    PMID: 32006247 DOI: 10.1007/s12010-019-03207-7
    The sustainability of nitrile glove production process is essential both in the financial and energy perspective. Nitrile glove has the lowest material cost with positive mechanical and chemical performance quality for the disposable glove market. Nitrile glove also holds a major market in disposable gloves sector, and nitrile rubber compounds may contribute to the huge reduction of the capital cost for a pair of surgical gloves due to the inexpensive raw material compares with other synthetic polyisoprene or neoprene. Hence, blending of bio-additive into the nitrile latex might support the 3 pillars of sustainability for environmental, societal, and financial sector. Bio-additives helps increase the degradation rate of gloves under natural conditions. Bio-based substances could be derived from food waste, natural plants, and aquatic plants like micro- and macro algae. Furthermore, antimicrobial agent (e.g. brilliant green and cyclohexadiene) is the trend in surgical glove for coated as protecting layer, due to the capability to remove pathogens or bacterial on the surgeon hands during operation period. Besides, the section in energy recovery is a proposing gateway for reducing the financial cost and makes the process sustainable.
    Matched MeSH terms: Rubber/chemistry*
  7. Yeang HY, Arif SA, Yusof F, Sunderasan E
    Methods, 2002 May;27(1):32-45.
    PMID: 12079415 DOI: 10.1016/S1046-2023(02)00049-X
    As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.
    Matched MeSH terms: Rubber*
  8. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, et al.
    J Allergy Clin Immunol, 1996 Sep;98(3):628-39.
    PMID: 8828541 DOI: 10.1016/s0091-6749(96)70097-0
    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.
    Matched MeSH terms: Rubber/chemistry*
  9. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
    Matched MeSH terms: Rubber/analysis
  10. Yeang HY
    Curr Opin Allergy Clin Immunol, 2004 Apr;4(2):99-104.
    PMID: 15021061
    PURPOSE OF REVIEW:
    New allergenic latex proteins have been identified, whereas further information on known latex allergens has emerged in recent years. Although prevalence figures for sensitization to the various latex allergens have been published in several studies in the past, the data have not been collated to facilitate cross-comparison.

    RECENT FINDINGS:
    Salient characteristics of the three most recently identified latex allergens, Hev b 11, 12 and 13 are described, whereas new findings on some of the previously recognized allergens are examined. Hev b 2 is viewed from the standpoint of allergenicity and protein glycosylation, Hev b 4 in relation to its biochemical identity and molecular cloning, Hev b 5 with respect to its recombinant form, and Hev b 6 in connection with conformational IgE epitopes. Reports on sensitization or allergic reaction to purified latex allergens from recent and past work are summarized. The use of latex allergens in latex allergy diagnostics is reviewed and discussed.

    SUMMARY:
    Thirteen latex allergens have been recognized by the International Union of Immunological Societies. Based on the results of published studies, native Hev b 2, recombinant Hev b 5, native or recombinant Hev b 6, native Hev b 13, and possibly native Hev b 4 are the major allergens relevant to latex-sensitized adults. Although there is an increasing tendency to identify and characterize latex allergens largely on the basis of their recombinant forms, not all such recombinant proteins have been fully validated against their native counterparts with respect to clinical significance.
    Matched MeSH terms: Rubber/adverse effects*; Rubber/classification
  11. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Rubber/chemistry*
  12. Whba R, Su'ait MS, Tian Khoon L, Ibrahim S, Mohamed NS, Ahmad A
    Polymers (Basel), 2021 Feb 23;13(4).
    PMID: 33672185 DOI: 10.3390/polym13040660
    The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the polymer was investigated. The existence of the -C≡N functional group at the end-product of ACN-g-ENR is confirmed by infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses. An enhanced grafting efficiency (~57%) was obtained after ACN was grafted onto the isoprene unit of ENR- 25 and showing a significant improvement in thermal stability and dielectric properties. The viscoelastic behaviour of the sample analysis showed an increase of storage modulus up to 150 × 103 MPa and the temperature of glass transition (Tg) was between -40 and 10 °C. The loss modulus, relaxation process, and tan delta were also described. Overall, the ACN-g-ENR shows a distinctive improvement in characteristics compared to ENR and can be widely used in many applications where natural rubber is used but improved thermal and mechanical properties are required. Likewise, it may also be used in electronic applications, for example, as a polymer electrolyte in batteries or supercapacitor.
    Matched MeSH terms: Rubber
  13. Watson M
    Matched MeSH terms: Rubber
  14. Wan-Norafikah O, Chen CD, Sofian-Azirun M
    Saudi J Biol Sci, 2021 Jan;28(1):1010-1016.
    PMID: 33424394 DOI: 10.1016/j.sjbs.2020.11.040
    Aedes albopictus larvae obtained from different types of agricultural and non-agricultural localities in Peninsular Malaysia were subjected to several larvicides at World Health Organization (WHO) recommended dosages. Upon 24 h of WHO larval bioassay using two organochlorines and six organophosphates, high resistance against dichlorodiphenyltrichloroethane (DDT), temephos, chlorpyrifos and bromophos were demonstrated among all larval populations. Aedes albopictus larvae from both paddy growing areas (92.33% mortality) and rubber estates (97.00% mortality) were moderately resistant to dieldrin while only Ae. albopictus larvae from dengue prone residential areas (89.00% mortality) showed high resistance against dieldrin. All Ae. albopictus larval populations also developed either incipient or high resistance to both malathion (33.67%-95.33% mortality) and fenitrothion (73.00%-92.67% mortality). Only Ae. albopictus larvae from fogging-free residential areas that were tolerant to fenthion (97.33% mortality), whereas Ae. albopictus larvae from dengue prone residential areas were highly resistant to the same organophosphate (88.33% mortality). Cross resistance between intraclass and interclass larvicides of organochlorines and organophosphates were also exhibited in this study. The present study provided baseline data on various susceptibility levels of Ae. albopictus larval populations from different types of agricultural and non-agricultural localities against organochlorines and organophosphates at WHO recommended dosages. Nevertheless, further susceptibility investigations are suggested using revised doses of larvicides established from the local reference strain of Ae. albopictus to prevent the underestimation or overestimation of insecticide resistance level among Ae. albopictus field strains of larvae.
    Matched MeSH terms: Rubber
  15. Wan, Ngeow Yen, Chin, Khaw Pei, Che Su Mt. Saad
    MyJurnal
    Reclaimed rubber from rejected natural rubber (NR) latex gloves (r-NRG) was evaluated as partial
    replacement for Standard Malaysian Rubber (SMR) 20 in producing microcellular rubber. In the study, the amount of reclaimed rubber varied from 20 pphr to 95 pphr for the purpose of cost reduction, environmental interest and as processing aids in reducing internal porosity, swells and to minimize shrinkage and air-trapped problems in producing microcellular rubber. A typical formulation in making microcellular rubber slab was developed and two-roll mill was used for compounding. The cure characteristics and mechanical properties, such as density, hardness, tensile strength, and elongation at break, were evaluated. Scorch time and cure rate index performed marginal decreased with increasing of r-NRG content. 95 pphr r-NRG blends showed a consequential drop in hardness. Both tensile properties and elongation at break decreased as the r-NRG content was increased.
    Matched MeSH terms: Rubber
  16. Wai TN, Lin KG, Siong TE, Hashim N
    Asia Pac J Clin Nutr, 2000 Jun;9(2):115-21.
    PMID: 24394397
    The present study is unique in the Malaysian context on two counts; first, it employs for the first time a functional group approach (groups based on occupational or economic activity) in the assessment of community nutritional status. Second, the study provides on a nationwide-sampling basis, information on total blood cholesterol (TC) levels in rural children (7.0-12.9 years; n = 1921) and adolescents (13.0-17.9 years; n = 753) which were hitherto unavailable. Total blood cholesterol measurements were performed on 7184 subjects ranging from 7 to 75-years-old (males = 3151; females = 4033) from households in 69 rural villages and seven estates in peninsular Malaysia, which were based on selected multistage random sampling according to the household's involvement in the following economic activities: rice farming, rubber smallholding, coconut smallholding, fishing and employment in estates. In all functional groups, TC values increased with age and there was a distinct gender effect, namely females had higher TC values than males throughout the age spectrum analyzed. Mean TC levels for children and adolescents were in the range 3.85-4.37 mmol/L, rising markedly during adulthood to an overall mean of 4.91 ± 1.13 mmol/L for men and 5.17 ± 1.11 mmol/L for women. In adults (>= 18.0 years), there was marked disparity in mean TC values among the functional groups; males and females from rice households had the lowest mean TC values (4.58 and 4.99 mmol/L, respectively). Individuals at 'high risk' (TC > 6.20 mmol/L) averaged 16.0% in women and 11.6% in men, with women from the fishing, rubber and coconut households particularly affected (17.1-21.1%). When compared to earlier rural TC data reported for closely similar rural communities in the peninsula, the present findings suggest a 'hypercholesterolemic shift' approximating 0.39 mmol/L (15 mg/dL) in the adult population; however, this was not apparent in the children and adolescents from these rural communities.
    Matched MeSH terms: Rubber
  17. Vijayaraghavan K, Ahmad D, Yazid AY
    J Hazard Mater, 2008 Jan 31;150(2):351-6.
    PMID: 17543454
    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.
    Matched MeSH terms: Rubber/chemistry*
  18. Turjanmaa K, Palosuo T, Alenius H, Leynadier F, Autegarden JE, André C, et al.
    Allergy, 1997 Jan;52(1):41-50.
    PMID: 9062628
    For the diagnosis of IgE-mediated (immediate) hypersensitivity to natural rubber latex (NRL), skin prick testing with extracts of latex gloves has been widely used, but such extracts are difficult to standardize. The present study aimed to produce on an industrial scale an NRL extract from freshly collected NRL and to evaluate, calibrate, and standardize the extract by both in vivo and in vitro testing. The source material, latex of the rubber tree, Hevea brasiliensis (clone RRIM 600), was frozen immediately after collection in Malaysia and shipped in dry ice to Stallergènes SA, France. Protein and allergen profiles were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, isoelectric focusing (IEF), crossed immunoelectrophoresis (CIE), and crossed radioimmunoelectrophoresis (CRIE). Allergen quantification was effected by RAST inhibition. The capacity of the preparation to elicit immediate hypersensitivity reactions in vivo was measured by skin prick testing in 46 latex-allergic patients and 76 nonallergic control subjects. SDS-PAGE and immunoblot profiles of the extract and an NRL standard (E8) provided by the US Food and Drug Administration were almost identical, disclosing several distinct IgE-binding proteins with apparent molecular weights of 14, 20, 27, 30, and 45 kDa, conforming to reported molecular weights of several significant NRL allergens. An arbitrary index of reactivity (IR) of 100 was assigned to the extract at 1:200 dilution (w/v), having a protein content of 22 micrograms/ml. Skin prick testing of latex-allergic patients and controls using the extract at 100 IR revealed 93% sensitivity, 100% specificity, 100% negative predictive value, and 96% positive predictive value. In conclusion, a skin prick test reagent for diagnosis of type I NRL allergy was successfully standardized. The reagent was demonstrated to contain most, if not all, of the currently known clinically significant NRL allergens, and it showed high sensitivity and specificity.
    Matched MeSH terms: Rubber/administration & dosage; Rubber/analysis; Rubber/standards*
  19. Taweepreda W
    Sains Malaysiana, 2014;43:241-245.
    Biodegradable polymeric films, obtained from chitosan/natural rubber latex (CS/NRL) blends with different compositions, have been prepared by wetting process. The blends were characterized by dynamic mechanical thermal analysis (DMTA) and found that the CS/NRL blends are thermodynamically incompatible. This is evident from the presence of two glass transitions, corresponding to CS and NRL phases in the blend. The mechanical properties of the CS/NRL blends were improved with increasing the amount of chitosan and after surface treatment with sulphuric acid due to the sulfonate ionic interaction. The dielectric properties was determined using Precision LCR meter in the frequency range 75 kHz up to 30 MHz. After CS/NRL surface treatment with sulphuric acid at high content of chitosan showed the highest dielectric constant. The surface properties of the CS/NRL blend films before and after surface treatment were confirmed by atomic force microscopy (AFM), respectively.
    Matched MeSH terms: Rubber
  20. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Rubber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links