Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Ahmad Fikri Abdul Karim, Hanafi Ismail, Zulkifli Mohamad Ariff
    Sains Malaysiana, 2018;47:2163-2169.
    This research was carried out to study the effects of kenaf loading and alkaline treatment on tensile properties, density,
    thermal and morphological properties of kenaf filled natural rubber latex foam (NRLF). Samples were prepared using a
    Dunlop method. From the results, increasing loading of kenaf reduced the tensile strength and elongation at break for
    both samples, treated and untreated kenaf filled NRLF. Meanwhile, modulus at 100% elongation and density increased
    with an increased in kenaf loading. Samples with treated kenaf showed higher tensile strength, modulus at 100%
    elongation and density but low in elongation at break as compared with samples with untreated kenaf. Thermal study
    by using thermogravimetric analysis (TGA) showed that thermal stability reduced with increased in kenaf loading for
    both samples. Samples with treated kenaf have higher thermal stability compared with samples of untreated kenaf. The
    filler-matrix interaction and the pores size variation of both samples was clearly seen in the micrograph images by using
    scanning electron microscope (SEM).
    Matched MeSH terms: Rubber
  2. Jing CJ, Seman IA, Zakaria L
    Trop Life Sci Res, 2015 Dec;26(2):45-57.
    PMID: 26868709 MyJurnal
    Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
    Matched MeSH terms: Rubber
  3. Rohna R, Ganesapillai T, Salbiah D, Zaiton I
    Med J Malaysia, 1999 Mar;54(1):128-31.
    PMID: 10972018
    A two years retrospective analysis of patients diagnosed as contact allergic dermatitis with positive patch test attending the Dermatology clinic was performed. Of the 346 patients with a positive patch test, 14% had occupational dermatitis. This condition affected mainly young and inexperienced workers. An inverse relationship was seen between age and prevalence of occupational allergic dermatitis. Allergic hand dermatitis was the commonest presentation in occupational allergic dermatitis. This was followed by dermatitis of the exposed skin (face, neck, hands and forearms). The common sensitising agents identified were rubber chemicals and nickel. The two main groups at risk were factory workers and medical personnel. The common allergens found in factory workers were epoxy resin, pewter, nickel and rubber chemicals. Exposure dermatitis occurred in patients working in the pewter industry. Two thirds of medical personnel with hand dermatitis were allergic to rubber gloves. One year follow up after patch testing showed that 19% of patients still suffered from chronic dermatitis. Dermatitis improved in 34% of patients. Forty-seven percent were cured and stopped attending the clinic after patch testing and adequate counselling.

    Study site: Dermatology Clinic, Hospital Kuala Lumpur
    Matched MeSH terms: Rubber
  4. Devaraj, V., Zairossani, M.N.
    ASM Science Journal, 2012;6(1):15-21.
    MyJurnal
    Malaysia is the world’s top manufacturer of examination and surgical natural rubber (NR) gloves, exported mainly to the USA and Europe. The glove manufacturing process yields effluent which must be treated to comply with the stringent regulatory requirements imposed by the Malaysian Department of Environment. To make glove manufacturing an eco-friendly process, efforts are geared towards minimizing and utilizing waste or converting it into raw material for making value-added products. Waste generated from the glove industry is mainly rubber sludge which is obtained from the chemical flocculation stage of the effluent treatment process and consists of mainly rubber, remnants of compounding ingredients and water. R&D work by the Malaysian Rubber Board on waste utilization and resource recovery investigations have revealed many uses for this sludge. This paper briefly outlines only one of the many options available, which is the conversion of the sludge into sludge derived fuel (SDF). Preliminary study has identified three formulations of SDF with calorific values (CV) exceeding 16 000 kJ/kg, matching a good grade coal. This was considered as promising results which warrant explorative work for further increasing the CV of SDF to turn it into a viable fuel substitute in the latex products manufacturing industry and subsequently apply for a Clean Development Mechanism status to generate income.
    Matched MeSH terms: Rubber
  5. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Rubber/chemistry*
  6. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Rubber
  7. Yeang HY
    Curr Opin Allergy Clin Immunol, 2004 Apr;4(2):99-104.
    PMID: 15021061
    PURPOSE OF REVIEW:
    New allergenic latex proteins have been identified, whereas further information on known latex allergens has emerged in recent years. Although prevalence figures for sensitization to the various latex allergens have been published in several studies in the past, the data have not been collated to facilitate cross-comparison.

    RECENT FINDINGS:
    Salient characteristics of the three most recently identified latex allergens, Hev b 11, 12 and 13 are described, whereas new findings on some of the previously recognized allergens are examined. Hev b 2 is viewed from the standpoint of allergenicity and protein glycosylation, Hev b 4 in relation to its biochemical identity and molecular cloning, Hev b 5 with respect to its recombinant form, and Hev b 6 in connection with conformational IgE epitopes. Reports on sensitization or allergic reaction to purified latex allergens from recent and past work are summarized. The use of latex allergens in latex allergy diagnostics is reviewed and discussed.

    SUMMARY:
    Thirteen latex allergens have been recognized by the International Union of Immunological Societies. Based on the results of published studies, native Hev b 2, recombinant Hev b 5, native or recombinant Hev b 6, native Hev b 13, and possibly native Hev b 4 are the major allergens relevant to latex-sensitized adults. Although there is an increasing tendency to identify and characterize latex allergens largely on the basis of their recombinant forms, not all such recombinant proteins have been fully validated against their native counterparts with respect to clinical significance.
    Matched MeSH terms: Rubber/adverse effects*; Rubber/classification
  8. Sunderasan E, Bahari A, Arif SA, Zainal Z, Hamilton RG, Yeang HY
    Clin Exp Allergy, 2005 Nov;35(11):1490-5.
    PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x
    BACKGROUND:
    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information.

    OBJECTIVE:
    We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding.

    METHODS:
    The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients.

    RESULTS:
    The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue.

    CONCLUSION:
    The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
    Matched MeSH terms: Rubber
  9. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, et al.
    J Exp Bot, 2007;58(10):2429-40.
    PMID: 17545224
    Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
    Matched MeSH terms: Rubber/metabolism*
  10. Vijayaraghavan K, Ahmad D, Yazid AY
    J Hazard Mater, 2008 Jan 31;150(2):351-6.
    PMID: 17543454
    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.
    Matched MeSH terms: Rubber/chemistry*
  11. Watson M
    Matched MeSH terms: Rubber
  12. Ekarizan Shaffie1, Ahmad Kamil Arshad, Ramadhansyah Putra Jaya, Khairil Azman Masri, Wardati Hashim
    MyJurnal
    Moisture susceptibiltiy is one of the common types of pavement failure found in asphaltic pavements.
    Climatic factor such as temperature and moisture has a profound effect on the durability of hot mix
    asphalt pavements. Couple with high traffic loads/stresses made stripping of pavement materials
    inevitable. Thus, it has become necessary to improve the efficiency of the design of hot mix asphalt
    (HMA) for better performance and safe riding comfort. This study investigates and discusses the findings
    on the stripping performance of dense graded Superpave mixes using two type of binder; un-modified
    binder and rubber polymer modified binder (RPM) using Superpave mix design (AASHTO TP4)
    procedure. The RPM binder consists of 4% of both rubber crumb and EVA polymer. Modified Lottman
    and Resilient Modulus tests were used to evaluate the stripping performance in these mixtures and this
    study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient
    modulus ratio (RMR) on the HMA mixtures. Experimental evidences show that the RPM binder mixes
    were found to have significantly improved the resistance to moisture damage compared to unmodified
    binder mixtures. The RPM binder application may able to alleviate problems related to aggregate
    stripping and potholes on our road. Statistical analysis showed good correlation between resilient
    modulus and tensile strength ratio.
    Matched MeSH terms: Rubber
  13. Abdul Yamin NAA, Basaruddin KS, Salleh AF, Salim MS, Wan Muhamad WZA
    Appl Bionics Biomech, 2021;2021:8842591.
    PMID: 33603827 DOI: 10.1155/2021/8842591
    Objective: The aim of this study was to investigate the effects of surface stiffness on multisegment foot kinematics and temporal parameters during running.

    Methods: Eighteen male subjects ran on three different surfaces (i.e., concrete, artificial grass, and rubber) in both heeled running shoes (HS) and minimal running shoes (MS). Both these shoes had dissimilar sole profiles. The heeled shoes had a higher sole at the heel, a thick base, and arch support, whereas the minimal shoes had a flat base sole. Indeed, the studied biomechanical parameters responded differently in the different footwear during running. Subjects ran in recreational mode speed while 3D foot kinematics (i.e., joint rotation and peak medial longitudinal arch (MLA) angle) were determined using a motion capture system (Qualysis, Gothenburg, Sweden). Information on stance time and plantar fascia strain (PFS) was also collected.

    Results: Running on different surface stiffness was found to significantly affect the peak MLA angles and stance times for both HS and MS conditions. However, the results showed that the joint rotation angles were not sensitive to surface stiffness. Also, PFS showed no relationship with surface stiffness, as the results were varied as the surface stiffness was changed.

    Conclusion: The surface stiffness significantly contributed towards the effects of peak MLA angle and stance time. These findings may enhance the understanding of biomechanical responses on various running surfaces stiffness in different shoe conditions.

    Matched MeSH terms: Rubber
  14. Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Wan Md Zin Wan Yunus
    MyJurnal
    Effects of organoclay concentration on the properties of radiation crosslinked natural rubber (NR)/ ethylene vinyl acetate (EVA)/clay nanocomposites were investigated. The NR/EVA blend with a ratio of 40/60 was melt blended with different concentration of either dodecyl ammonium montmorillonite (DDA-MMT) or dimethyl dihydrogenated tallow quarternary ammonium montmorillonite (C20A). Composite of NR/EVA blend with unmodified clay (Na-MMT) was also prepared for comparison purposes. The composites were irradiated with electron beam (EB) at an optimum irradiation dose. The formation of radiation-induced crosslinking depends on the type and concentration of the organoclay used in the preparation of nanocomposites as measured by gel content. Changes in the interlayer distance of the silicate layers with the increase of organoclay concentration were shown by the XRD results. Variation in the tensile properties of the nanocomposites with the increase of organoclay concentration depends on the formation of crosslinking as well as reinforcement effect of the organoclay. Improvement in thermal stability of the NR/EVA blend was also observed with the presence of organoclay.
    Matched MeSH terms: Rubber
  15. Chai CK, Md. Soot Ahmad, Wan Manshol W. Zin
    Electron beam vulcanization of natural rubber latex has been developed as an alternative to the conventional sulphur vulcanization method. This study aimed at determining the effect of electron beam dose, beam current and centrifugation to the tensile properties of field natural rubber latex. Irradiation dose and beam current ranged from 50 to 300 kGy and 1 to 15 mA respectively. The determination of tensile properties were done on cast film prepared from irradiated field latex before and after centrifugation. It was found that tensile properties increased with radiation dose but decreased with beam current. Rubber films made from centrifuged irradiated field latex were softer and showed higher tensile strength.
    Matched MeSH terms: Rubber
  16. Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z, et al.
    J Exp Bot, 2012 Mar;63(5):1863-71.
    PMID: 22162870 DOI: 10.1093/jxb/err363
    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.
    Matched MeSH terms: Rubber/metabolism*
  17. Syahrul Affandi Saidi, Syarifah Idrus Sofia Syed Mohd Yamin, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    In Malaysia, it is estimated that almost 80 percent of the world's population today used palm oil in their daily lives. Malaysia is the second country exporting palm oil, about 39 percent of world palm oil output. Besides that, Malaysia also recorded about 44 per cent of world exports, making the palm industry very important for countries other than rubber and cocoa. However, to keep the palm industry running smoothly and constantly, there are many challenges to face. One is to maintain soil fertility because the soil can affect the growth of oil palm trees. With the use of this system, it will show the condition of soil behaviour to the farmer about the treatment given. Arduino board is used in this project which it is programmed to calculate and display the level of soil condition by using temperature sensor and soil moisture sensors as an input. This sensor will detect the level of soil moisture and temperature and it is easier for farmers to monitor the soil conditions. Controlled soil conditions can improve the soil's ability to maintain the fertility of palm trees and help plant growth suit to the weather and local climate.
    Matched MeSH terms: Rubber
  18. Ch'ng SY, Andriyana A, Tee YL, Verron E
    Materials (Basel), 2015 Mar 02;8(3):884-898.
    PMID: 28787977 DOI: 10.3390/ma8030884
    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material's ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored.
    Matched MeSH terms: Rubber
  19. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Verbeek JH
    Cochrane Database Syst Rev, 2020 Oct 12;10(10):CD013686.
    PMID: 33047816 DOI: 10.1002/14651858.CD013686.pub2
    BACKGROUND: Many dental procedures produce aerosols (droplets, droplet nuclei and splatter) that harbour various pathogenic micro-organisms and may pose a risk for the spread of infections between dentist and patient. The COVID-19 pandemic has led to greater concern about this risk.

    OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.

    MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).

    AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.

    Matched MeSH terms: Rubber Dams
  20. Perkins AN, Inayat-Hussain SH, Deziel NC, Johnson CH, Ferguson SS, Garcia-Milian R, et al.
    Environ Res, 2019 02;169:163-172.
    PMID: 30458352 DOI: 10.1016/j.envres.2018.10.018
    Currently, there are >11,000 synthetic turf athletic fields in the United States and >13,000 in Europe. Concerns have been raised about exposure to carcinogenic chemicals resulting from contact with synthetic turf fields, particularly the infill material ("crumb rubber"), which is commonly fabricated from recycled tires. However, exposure data are scant, and the limited existing exposure studies have focused on a small subset of crumb rubber components. Our objective was to evaluate the carcinogenic potential of a broad range of chemical components of crumb rubber infill using computational toxicology and regulatory agency classifications from the United States Environmental Protection Agency (US EPA) and European Chemicals Agency (ECHA) to inform future exposure studies and risk analyses. Through a literature review, we identified 306 chemical constituents of crumb rubber infill from 20 publications. Utilizing ADMET Predictor™, a computational program to predict carcinogenicity and genotoxicity, 197 of the identified 306 chemicals met our a priori carcinogenicity criteria. Of these, 52 chemicals were also classified as known, presumed or suspected carcinogens by the US EPA and ECHA. Of the remaining 109 chemicals which were not predicted to be carcinogenic by our computational toxicology analysis, only 6 chemicals were classified as presumed or suspected human carcinogens by US EPA or ECHA. Importantly, the majority of crumb rubber constituents were not listed in the US EPA (n = 207) and ECHA (n = 262) databases, likely due to an absence of evaluation or insufficient information for a reliable carcinogenicity classification. By employing a cancer hazard scoring system to the chemicals which were predicted and classified by the computational analysis and government databases, several high priority carcinogens were identified, including benzene, benzidine, benzo(a)pyrene, trichloroethylene and vinyl chloride. Our findings demonstrate that computational toxicology assessment in conjunction with government classifications can be used to prioritize hazardous chemicals for future exposure monitoring studies for users of synthetic turf fields. This approach could be extended to other compounds or toxicity endpoints.
    Matched MeSH terms: Rubber*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links