Displaying all 8 publications

Abstract:
Sort:
  1. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, et al.
    J Exp Bot, 2007;58(10):2429-40.
    PMID: 17545224
    Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
    Matched MeSH terms: Rubber/metabolism*
  2. Chin KL, H'ng PS, Wong LJ, Tey BT, Paridah MT
    Bioresour Technol, 2010 May;101(9):3287-91.
    PMID: 20056407 DOI: 10.1016/j.biortech.2009.12.036
    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
    Matched MeSH terms: Rubber/metabolism*
  3. Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z, et al.
    J Exp Bot, 2012 Mar;63(5):1863-71.
    PMID: 22162870 DOI: 10.1093/jxb/err363
    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.
    Matched MeSH terms: Rubber/metabolism*
  4. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al.
    BMC Genomics, 2013;14:75.
    PMID: 23375136 DOI: 10.1186/1471-2164-14-75
    Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.
    Matched MeSH terms: Rubber/metabolism
  5. Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, et al.
    Sci Rep, 2016 06 24;6:28594.
    PMID: 27339202 DOI: 10.1038/srep28594
    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.
    Matched MeSH terms: Rubber/metabolism*
  6. Makita Y, Ng KK, Veera Singham G, Kawashima M, Hirakawa H, Sato S, et al.
    DNA Res, 2017 Apr 01;24(2):159-167.
    PMID: 28431015 DOI: 10.1093/dnares/dsw056
    Natural rubber has unique physical properties that cannot be replaced by products from other latex-producing plants or petrochemically produced synthetic rubbers. Rubber from Hevea brasiliensis is the main commercial source for this natural rubber that has a cis-polyisoprene configuration. For sustainable production of enough rubber to meet demand elucidation of the molecular mechanisms involved in the production of latex is vital. To this end, we firstly constructed rubber full-length cDNA libraries of RRIM 600 cultivar and sequenced around 20,000 clones by the Sanger method and over 15,000 contigs by Illumina sequencer. With these data, we updated around 5,500 gene structures and newly annotated around 9,500 transcription start sites. Second, to elucidate the rubber biosynthetic pathways and their transcriptional regulation, we carried out tissue- and cultivar-specific RNA-Seq analysis. By using our recently published genome sequence, we confirmed the expression patterns of the rubber biosynthetic genes. Our data suggest that the cytoplasmic mevalonate (MVA) pathway is the main route for isoprenoid biosynthesis in latex production. In addition to the well-studied polymerization factors, we suggest that rubber elongation factor 8 (REF8) is a candidate factor in cis-polyisoprene biosynthesis. We have also identified 39 transcription factors that may be key regulators in latex production. Expression profile analysis using two additional cultivars, RRIM 901 and PB 350, via an RNA-Seq approach revealed possible expression differences between a high latex-yielding cultivar and a disease-resistant cultivar.
    Matched MeSH terms: Rubber/metabolism*
  7. Nanthini J, Ong SY, Sudesh K
    Gene, 2017 Sep 10;628:146-155.
    PMID: 28711667 DOI: 10.1016/j.gene.2017.07.039
    Rubber materials have greatly contributed to human civilization. However, being a polymeric material does not decompose easily, it has caused huge environmental problems. On the other hand, only few bacteria are known to degrade rubber, with studies pertaining them being intensively focusing on the mechanism involved in microbial rubber degradation. The Streptomyces sp. strain CFMR 7, which was previously confirmed to possess rubber-degrading ability, was subjected to whole genome sequencing using the single molecule sequencing technology of the PacBio® RS II system. The genome was further analyzed and compared with previously reported rubber-degrading bacteria in order to identify the potential genes involved in rubber degradation. This led to the interesting discovery of three homologues of latex-clearing protein (Lcp) on the chromosome of this strain, which are probably responsible for rubber degrading activities. Genes encoding oxidoreductase α-subunit (oxiA) and oxidoreductase β-subunit (oxiB) were also found downstream of two lcp genes which are located adjacent to each other. In silico analysis reveals genes that have been identified to be involved in the microbial degradation of rubber in the Streptomyces sp. strain CFMR 7. This is the first whole genome sequence of a clear-zone-forming natural rubber- degrading Streptomyces sp., which harbours three Lcp homologous genes with the presence of oxiA and oxiB genes compared to the previously reported Gordonia polyisoprenivorans strain VH2 (with two Lcp homologous genes) and Nocardia nova SH22a (with only one Lcp gene).
    Matched MeSH terms: Rubber/metabolism
  8. Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, et al.
    J Exp Bot, 2017 Nov 02;68(18):5045-5055.
    PMID: 29036360 DOI: 10.1093/jxb/erx331
    Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
    Matched MeSH terms: Rubber/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links