Displaying publications 1 - 20 of 172 in total

Abstract:
Sort:
  1. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
    Matched MeSH terms: Silicates
  2. Abdul Rahim Samsudin, Umar Hamzah, Zuraidah Ramli
    Sains Malaysiana, 2007;36:159-163.
    An integrated geophysical study was conducted to investigate the subsurface regional structure and the presence of a Quaternary sedimentary basin in the Olak Lempit - Banting area of Selangor, Malaysia. A regional gravity survey and the high resolution reflection seismic were employed to determine the thickness and areal distribution of the alluvial sedimentary basin as well as to investigate the depth and topography of the bedrock in the study area. The sedimentary basin hosts one of the most important coastal alluvial aquifer which was used to cater the shortage of domestic water supply during the worst water crisis that hit the state of Selangor in 1998. The surface geological map shows that in general 70% of the study area is covered by Quaternary deposits of Beruas, Gula and Simpang Formations which overlie the sedimentary bedrock of Kenny Hill Formation. The Beruas Formation consists of mainly clay, sandy clay and peat of Holocene fluviatile-estuarine deposits, whereas the Gula Formation represents Holocene marine to estuarine sediments which mostly consists of clay and minor sand. The Simpang Formation (Pleistocene) is a continental deposit comprising of gravel, sand, clay and silt. The underlying Kenny Hill Formation consists of a monotonous sequence of interbedded shales, mudstones and sandstones. The rock is Carbonaceous in age and it forms an undulating surface topography in the eastern part of the study area. A total of 121 gravity stations were established using a La Coste & Romberg gravity meter and the elevations of most of the stations were determined barometrically using Tiernan-Wallace altimeters. The high resolution seismic reflection using the common mid point (CMP) or roll along technique was carried out using a 24 channel signal enhancement seismograph and high frequency geophones. A total length of about 1.7 km stacked seismic section has been acquired in this survey and a nearby borehole data was used for interpretation. A relative Bouguer anomaly map shows an elongated zone of low gravity anomaly trending approximately NW-SE which is interpreted to be the deposition center of the Quaternary basin. The interpreted gravity profiles running across the central area of the study area show that the basin has thickness varies from tenth to several hundred meters with maximum depth to bedrock of about 275m. A gravity profile which passes through the eastern edge of the basin was modeled with depth to bedrock of about 178m below ground which agrees very well with those obtained from the interpreted seicmic section and borehole data. The stacked seismic section shows several high amplitude parallel to sub-parallel reflection overlying discontinuos and low reflection pattern. Reflections on the eastern part of the section is much shallower than the one observed on the western part which clearly indicates the presence of basinal structure with a total interpreted depth to bedrock of about 200 meters.
    Matched MeSH terms: Aluminum Silicates
  3. Goh KL, Makaremi M, Pasbakhsh P, De Silva R, Zivkovic V
    Data Brief, 2018 Dec;21:2170-2178.
    PMID: 30555856 DOI: 10.1016/j.dib.2018.11.039
    The mechanical properties of electrospun polyacrylonitrile (PAN)-based membranes for ultrafiltration, such as oil-water separation and heavy metals from water, are often characterised in the dry state but little is known about the membrane properties in the hydrated state. This dataset comprised mechanical properties and structure-related properties of electrospun PAN-based membranes. The mechanical dataset described the yield strength and strain, stiffness, resilience energy, fracture strength, strain at fracture and fracture toughness of electrospun neat PAN and halloysite nanotube (HNT) reinforced PAN membranes in both hydrated and dry states. The data related to the hydrated state were derived from direct measurements of the mechanical properties of the PAN-based membrane using a novel environmental micromechanical tester. The structure-related dataset comprised electron micrographs and quantitative measurements (fibre diameter and pore diameter) derived from the micrographs. For further interpretation and discussion of the dataset, the reader is referred to the research data article, "Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water" (Govindasamy et al., 2014).
    Matched MeSH terms: Aluminum Silicates
  4. Ahmad Saat, Zaini Hamzah
    MyJurnal
    Clay has been regarded as very important natural industrial materials. All these industries exploit the properties that clay can be molded into any shape and fired to dry without losing its form. A study was carried out on clay samples from eight sites in the north-eastern part of Peninsular Malaysia. The study was accomplished by using X-ray diffraction (XRD) technique. The x-ray diffraction spectra obtained enable the determination of the lattice spacing associated with the types of clay and nonclay minerals present in the samples. Results of the study shows that the major components of clay minerals present in all samples studied are kaolinite and illite. The presence of kaolinite is confirmed by firing test in which the kaolinite diffraction peaks disappeared upon heating the samples at 600 o C. The presence of non-clay minerals such as quartz, mica, feldspar and chlorite are also observed.
    Matched MeSH terms: Aluminum Silicates
  5. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
    Matched MeSH terms: Silicates
  6. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Silicates
  7. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar
    MyJurnal
    Being an imperative material for man either used as building materials, pottery or as components in material industry and technology, knowledge of clays elemental contents is important. In the present study ten clay samples obtained from various locations in North-West Peninsular Malaysia were used. Majority of the clays were economically manufactured to be used as building materials or pottery. The objective of study was to determine the main elemental contents of the samples, and relate the results to the types of minerals, as well as to compare them with clays from other studies. In the study X-ray Fluorescence (XRF) coupled to samples dilution method and standard calibration samples was used. The elements detected in the study were Si, Al, Fe, Ti, K and Ca. Depending on locations, the percentage concentration ranged between 24.8 – 32.4 for Si, 10.8 – 19.0 for Al, 0.09 – 2.12 for Fe, 0.08 – 1.13 for Ti, 0.45 – 3.39 for K and trace amount of Ca and P. However, Mg that normally found in typical clay was not found in the studied samples. Comparing the oxide of the major elements with other studies, it was found that the clay samples contained mixtures of kaolinite (two-layered structure) and illite (three-layered structure).
    Matched MeSH terms: Aluminum Silicates
  8. Adzmi F, Meon S, Musa MH, Yusuf NA
    J Microencapsul, 2012;29(3):205-10.
    PMID: 22309479 DOI: 10.3109/02652048.2012.659286
    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p 
    Matched MeSH terms: Aluminum Silicates
  9. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Aluminum Silicates/chemistry
  10. Mou Y, Yingfeng-Meng, Gao L, Lin H, Yufei-Li
    Sains Malaysiana, 2014;43:81-87.
    It is well-known that the characteristics of hardness and drillability are influenced by microstructure of rock. In this study, rock properties were analyzed on grain size and grain content. Coarse-grain and fine-grain sandstones were tested under successive indentation condition. Eighteen groups of sandstone and shale were employed for the drillability test. Indentation tests results showed that grain size influenced the low point of residual hardness, the crushing depth and volume and grain content influenced the peak point of hardness. The drillability values of shale increased with increasing contents of clay and quartz. Meanwhile, drillability values of sandstone increased with increasing content of quartz, but decreased with increasing content of clay. Therefore, these preliminary studies show great potential applications for selecting suitable bit type and formulating drilling program as a function of rock microstructure and crushing rock method for bit in the oil drilling.
    Matched MeSH terms: Aluminum Silicates
  11. Huang C, Lou C, Chuang Y, Lin J, Liu C, Yu Z
    Sains Malaysiana, 2015;44:1757-1763.
    Following rapid technological and industrial development, factories have been equipped with a great deal of machines.
    The blend of industrial and residential areas in turn resulted in many environmental problems. In particular, machine
    operation causes noise pollution that easily causes physiological and psychological discomfort for the human body thus
    makes noise abatement a crucial and urgent issue. In this study, vermiculite functional fillers were added to polyurethane
    (PU) foam mixtures in order to form sound absorbent PU foams. The correlations between the contents of functional fillers
    and the sound absorption of flexible and rigid PU foams were then examined. The optimal PU foams were combined with
    PET/carbon fiber matrices in order to yield the electromagnetic shielding effectiveness. The sound absorption, noise
    reduction coefficient (NRC), electromagnetic shielding effectiveness and resilience rate of the composite boards were
    finally evaluated. The test results indicated that rigid PU foam composites can reach a sound absorption coefficient of
    0.8 while the flexible PU foam composites have higher mechanical properties.
    Matched MeSH terms: Aluminum Silicates
  12. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM
    Int J Biol Macromol, 2020 Nov 15;163:756-765.
    PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014
    In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
    Matched MeSH terms: Aluminum Silicates
  13. Ishak S, Lee HS, Singh JK, Ariffin MAM, Lim NHAS, Yang HM
    Materials (Basel), 2019 Oct 17;12(20).
    PMID: 31627479 DOI: 10.3390/ma12203404
    This paper presents the experimental results on the behavior of fly ash geopolymer concrete incorporating bamboo ash on the desired temperature (200 °C to 800 °C). Different amounts of bamboo ash were investigated and fly ash geopolymer concrete was considered as the control sample. The geopolymer was synthesized with sodium hydroxide and sodium silicate solutions. Ultrasonic pulse velocity, weight loss, and residual compressive strength were determined, and all samples were tested with two different cooling approaches i.e., an air-cooling (AC) and water-cooling (WC) regime. Results from these tests show that with the addition of 5% bamboo ash in fly ash, geopolymer exhibited a 5 MPa (53%) and 5.65 MPa (66%) improvement in residual strength, as well as 940 m/s (76%) and 727 m/s (53%) greater ultrasonic pulse velocity in AC and WC, respectively, at 800 °C when compared with control samples. Thus, bamboo ash can be one of the alternatives to geopolymer concrete when it faces exposure to high temperatures.
    Matched MeSH terms: Silicates
  14. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
    Matched MeSH terms: Silicates/chemistry*
  15. Mohamed Haneef INH, Mohd Shaffiar N, Buys YF, Syed Shaharuddin SI, Abdul Hamid AM, Widiyati K
    J Biomed Mater Res B Appl Biomater, 2022 11;110(11):2574-2588.
    PMID: 35661579 DOI: 10.1002/jbm.b.35105
    Halloysite nanotubes (HNTs) have recently been the subject of extensive research as a reinforcing filler. HNT is a natural nanoclay, non-toxic and biocompatible, hence, applicable in biomedical fields. This review focuses on the mechanical, thermal, and functional properties of polymer nanocomposites with HNT as a reinforcing agent from an experimental and theoretical perspective. In addition, this review also highlights the recent applications of polymer/HNT nanocomposites in the biomedical fields.
    Matched MeSH terms: Aluminum Silicates
  16. Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Wan Md Zin Wan Yunus
    MyJurnal
    Effects of organoclay concentration on the properties of radiation crosslinked natural rubber (NR)/ ethylene vinyl acetate (EVA)/clay nanocomposites were investigated. The NR/EVA blend with a ratio of 40/60 was melt blended with different concentration of either dodecyl ammonium montmorillonite (DDA-MMT) or dimethyl dihydrogenated tallow quarternary ammonium montmorillonite (C20A). Composite of NR/EVA blend with unmodified clay (Na-MMT) was also prepared for comparison purposes. The composites were irradiated with electron beam (EB) at an optimum irradiation dose. The formation of radiation-induced crosslinking depends on the type and concentration of the organoclay used in the preparation of nanocomposites as measured by gel content. Changes in the interlayer distance of the silicate layers with the increase of organoclay concentration were shown by the XRD results. Variation in the tensile properties of the nanocomposites with the increase of organoclay concentration depends on the formation of crosslinking as well as reinforcement effect of the organoclay. Improvement in thermal stability of the NR/EVA blend was also observed with the presence of organoclay.
    Matched MeSH terms: Aluminum Silicates
  17. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
    Matched MeSH terms: Aluminum Silicates/chemistry*
  18. Azhar Abdullah, Shamsuddin Sulaiman, Hang Tuah Baharudin, B.T., Mohd Khairol Anuar Mohd Ariffin, Vijayaram, Thoguluva Raghvan
    MyJurnal
    Tailing sand is the residue mineral from tin extraction that contains between 94% and 99.5% silica, which can be used as moulding sand. It is found in abundance in the Kinta Valley in the state of Perak, Malaysia. Adequate water content and clay in moulding sand are important factors for better strength and
    casting quality of products made from tailing sand. Samples of tailing sand were investigated according
    to the American Foundrymen Society (AFS) standard. Cylindrical test pieces of Ø50 mm×50 mm in height from various sand-water ratios were compacted by applying three ramming blows of 6666g each using a Ridsdale-Dietert metric standard rammer. The specimens were tested for green compression strength using a Ridsdale-Dietert universal sand strength machine. Before the tests were conducted, moisture content of the tailing sand was measured using a moisture analyser. A mixture bonded with 8% clay possesses higher green compression strength compared to samples bonded with 4% clay. The results also show that in order to achieve maximum green compression strength, the optimum allowable moisture content for mixtures bonded with 8% clay is ranged between 3.75 and 6.5% and for mixtures bonded with 4% clay is 3-5.5%.
    Matched MeSH terms: Aluminum Silicates
  19. Huat TG, Hock GS, Vijayaletchumy K
    Environ Monit Assess, 1991 Oct;19(1-3):469-79.
    PMID: 24233962 DOI: 10.1007/BF00401334
    The use of organochlorine pesticides has caused concern due to their effects on human health and the Malaysian aquatic ecosystem, particularly so in view of their persistent and bioaccumulative properties. Since the extent of organochlorine pesticide pollution in Malaysian waterways is unknown except for isolated instances, a systematic survey has now been carried out. Water samples from various rivers were extracted, cleaned up with Florisil and analysed for the individual organochlorine pesticides by gas chromatography (GC) with an electron capture detector (ECD). DDE, DDT and heptachlor were present in all the river water samples of the west coast of Peninsular Malaysia. Other organochlorine pesticides were also identified from the water samples. However, the levels of all these are still below criteria values for Malaysian aquatic life, indicating that organochlorine pesticide pollution is less of a problem than other organic or inorganic pollutants.
    Matched MeSH terms: Magnesium Silicates
  20. Bera H, Nadimpalli J, Kumar S, Vengala P
    Int J Biol Macromol, 2017 Nov;104(Pt A):1229-1237.
    PMID: 28688948 DOI: 10.1016/j.ijbiomac.2017.07.027
    Flurbiprofen (FLU), a non-steroidal anti-inflammatory drug, exhibits limited clinical response due to its poor physicochemical properties. This study aimed at developing reliable drug carriers for intrgastric FLU delivery with a view to improve biopharmaceutical characteristics of drug and modulate its release in a controlled manner. In this context, FLU-loaded kondogogu gum (KG)-Zn(+2)-low methoxyl (LM) pectinate emulgel matrices reinforced with calcium silicate (CS) were accomplished by ionotropic gelation technique employing zinc acetate as cross-linker and characterized for their in vitro performances. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 46-87%) and sustained drug release behavior (Q7h, 70-91%). These quality attributes were remarkably influenced by polymer-blend (LM pectin:KG) ratios, low-density oil types and CS inclusion. The drug release profile of the FLU-loaded optimized matrices (F-7) was best fitted in Korsmeyer-Peppas model with Fickian diffusion driven mechanism. It also conferred excellent in vitro gastroretention capabilities. Moreover, the drug-excipient compatibility, alteration of crystallinity and thermal behavior of drug and surface morphology of matrices were evidenced with the results of FTIR, XRD, DSC and SEM analyses, respectively. Thus, the newly developed matrices are appropriate for sustained intragastric FLU delivery and simultaneous zinc supplementation for effective inflammation and arthritis management.
    Matched MeSH terms: Silicates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links