Displaying publications 1 - 20 of 185 in total

Abstract:
Sort:
  1. Hui YW, Narayanan K, Dykes GA
    Water Environ Res, 2016 Nov 01;88(11):2040-2046.
    PMID: 26704787 DOI: 10.2175/106143016X14504669767292
      The effect of physical shearing on the attachment of six Pseudomonas aeruginosa strains and six Burkholderia cepacia strains to glass, stainless steel, polystyrene and Teflon® was determined. A significant (p < 0.05) decrease in hydrophobicity was apparent for all P. aeruginosa strains (17-36%) and B. cepacia, MS 5 (20%) after shearing. A significant (p < 0.05) decrease in attachment of some P. aeruginosa (0.2-0.5 log CFU/cm2) and B. cepacia (0.2-0.4 log CFU/cm2) strains to some surface types was apparent after shearing. Significant (p < 0.05) correlation was observed for both numbers of flagellated cells and hydrophobicity against attachment to glass, stainless steel and polystyrene for P. aeruginosa while only hydrophobicity showed significant correlation against the same surfaces for B. cepacia. Scanning electron microscopy and protein analysis showed that shearing removed surface proteins from the cells and may have led to the observed changes in hydrophobicity and attachment to abiotic surfaces.
    Matched MeSH terms: Stainless Steel
  2. Alguri KS, Chia CC, Harley JB
    Ultrasonics, 2021 Mar;111:106338.
    PMID: 33338729 DOI: 10.1016/j.ultras.2020.106338
    Wavefield imaging is a powerful visualization tool in nondestructive evaluation for studying ultrasonic wave propagation and its interactions with damage. To isolate and study damage scattering, damage-free baseline data is often subtracted from a wavefield. This is often necessary because the damage wavefield can be orders of magnitude weaker than the incident waves. Yet, baselines are not always accessible. When the baselines are accessible, the experimental conditions for the baseline and test data must be extremely similar. Researchers have created several baseline-free approaches for isolating damage wavefields, but these often rely on specific experimental setups. In this paper, we discuss a flexible approach based on ultrasonic guided wave digital surrogates (i.e., numerical simulations of incident waves) and transfer learning. We demonstrate this approach with two setups. We first isolate reflections from a circular, 2 mm diameter half-thickness hole on a 10 × 10 cm steel plate. We then isolate 8 circular, half-thickness holes of various diameters from 1 mm to 40 mm on a 60 × 60 cm steel plate. The second plate has a non-square geometry and the data has multi-path reflections. With both data sets, we isolate damage reflections without explicit experimental baselines. We also briefly illustrate the comparison of our dictionary learning method with wavenumber filtering technique which is often used to enhance the defect wavefields.
    Matched MeSH terms: Steel
  3. Kamruzzaman M, Jumaat MZ, Sulong NH, Islam AB
    ScientificWorldJournal, 2014;2014:702537.
    PMID: 25243221 DOI: 10.1155/2014/702537
    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
    Matched MeSH terms: Steel/standards*; Steel/chemistry
  4. Abd Aziz SN, Pung SY, Ramli NN, Lockman Z
    ScientificWorldJournal, 2014;2014:252851.
    PMID: 24587716 DOI: 10.1155/2014/252851
    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.
    Matched MeSH terms: Stainless Steel/chemistry*
  5. Zahmatkesh F, Osman MH, Talebi E
    ScientificWorldJournal, 2014;2014:323206.
    PMID: 24587720 DOI: 10.1155/2014/323206
    Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.
    Matched MeSH terms: Steel*
  6. Mohammed MN, Omar MZ, Syarif J, Sajuri Z, Salleh MS, Alhawari KS
    ScientificWorldJournal, 2013;2013:828926.
    PMID: 24223510 DOI: 10.1155/2013/828926
    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.
    Matched MeSH terms: Steel/chemistry*
  7. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Steel
  8. Reddy KB, Dash S, Kallepalli S, Vallikanthan S, Chakrapani N, Kalepu V
    J Contemp Dent Pract, 2013 Nov 1;14(6):1028-35.
    PMID: 24858745
    The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper).
    Matched MeSH terms: Stainless Steel/chemistry
  9. Hussain PB, Mohammad M
    Med J Malaysia, 2004 May;59 Suppl B:180-1.
    PMID: 15468877
    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.
    Matched MeSH terms: Stainless Steel*
  10. Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S
    Med J Malaysia, 2004 May;59 Suppl B:93-4.
    PMID: 15468834
    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.
    Matched MeSH terms: Stainless Steel
  11. Lopez JM, Sachithanandan A, Leow MP
    Med J Malaysia, 2016 Jun;71(3):142-3.
    PMID: 27495890 MyJurnal
    Hypersensitivity to stainless steel sternal sutures are an uncommon occurrence. We present a case of such a patient who developed chronic tissue overgranulation over a sternotomy wound eight weeks post-operatively. Primary suspicion was infection, a more common complication however radiological and laboratory investigation showed otherwise. Conservative management provided limited ephemeral success. After ensuring adequate sternal bone healing, the sutures and granulation tissue were eventually surgically removed without complication and the reoperated wound healed well.
    Matched MeSH terms: Steel
  12. Razak AA, Harrison A
    J Prosthet Dent, 1997 Apr;77(4):353-8.
    PMID: 9104710
    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses.
    Matched MeSH terms: Stainless Steel
  13. Tay WM
    Dent J Malaysia Singapore, 1968 Feb;8(1):24-8.
    PMID: 5248555
    Matched MeSH terms: Stainless Steel
  14. Lee FW, Chai HK, Lim KS
    Sensors (Basel), 2016;16(3).
    PMID: 26959028 DOI: 10.3390/s16030337
    An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.
    Matched MeSH terms: Steel
  15. Zaki A, Chai HK, Aggelis DG, Alver N
    Sensors (Basel), 2015;15(8):19069-101.
    PMID: 26251904 DOI: 10.3390/s150819069
    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.
    Matched MeSH terms: Steel
  16. Luo D, Li P, Yue Y, Ma J, Yang H
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471372 DOI: 10.3390/s17050962
    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
    Matched MeSH terms: Steel
  17. Rifai D, Abdalla AN, Razali R, Ali K, Faraj MA
    Sensors (Basel), 2017 Mar 13;17(3).
    PMID: 28335399 DOI: 10.3390/s17030579
    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
    Matched MeSH terms: Steel
  18. Naz MY, Ismail NI, Sulaiman SA, Shukrullah S
    Sci Rep, 2015;5:16583.
    PMID: 26561231 DOI: 10.1038/srep16583
    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.
    Matched MeSH terms: Steel
  19. Al-Amiery AA, Binti Kassim FA, Kadhum AA, Mohamad AB
    Sci Rep, 2016 Jan 22;6:19890.
    PMID: 26795066 DOI: 10.1038/srep19890
    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10(-3) M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir's adsorption isotherm. The effect of te perature on corrosion behavior in the presence of 5 × 10(-3) M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.
    Matched MeSH terms: Steel
  20. Ahad Javanmardi, Zainab Ibrahim, Khaled Gheadi, Mohammed Jameel, Usman Hanif, Gordan, Meisam
    Scientific Research Journal, 2018;15(1):1-14.
    MyJurnal
    Nowadays, development of cable-stayed bridges is increasing around the world. The mitigation of seismic forces to these bridges are obligatory to prevent damages or failure of its structural members. Herein, this paper aimed to determine the near-fault ground motion effect on an existing cablestayed bridge equipped with lead-rubber bearing. In this context, Shipshaw cable-stayed bridge is selected as the case study. The selected bridge has a span of 183.2 m composite deck and 43 m height of steel tower. 2D finite element models of the non-isolated and base isolated bridges are modelled by using SAP2000. Three different near-fault ground motions which are Tabas 1978, Cape Mendocino 1992 and Kobe 1995 were subjected to the 2D FEM models in order to determine the seismic behaviour of the bridge. The near-fault ground motions were applied to the bridge in the longitudinal direction. Nonlinear dynamic analysis was performed to determine the dynamic responses of the bridge. Comparison of dynamic response of nonisolated and base isolated bridge under three different near-fault ground motions were conducted. The results obtained from numerical analyses of the bridge showed that the isolation system lengthened the period of bridge and minimised deck displacement, base shear and base moment of the bridge. It is concluded that the isolation system significantly reduced the destructive effects of near-fault ground motions on the bridge.
    Matched MeSH terms: Steel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links