Displaying publications 1 - 20 of 315 in total

Abstract:
Sort:
  1. Rohaina CM, Then KY, Ng AM, Wan Abdul Halim WH, Zahidin AZ, Saim A, et al.
    Transl Res, 2014 Mar;163(3):200-10.
    PMID: 24286920 DOI: 10.1016/j.trsl.2013.11.004
    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model.
    Matched MeSH terms: Tissue Engineering*
  2. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR
    Tissue Eng Part C Methods, 2018 06;24(6):368-378.
    PMID: 29690856 DOI: 10.1089/ten.TEC.2017.0447
    Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
    Matched MeSH terms: Tissue Engineering/methods*
  3. Sulaiman S, Rani RA, Mohamad Yahaya NH, Tabata Y, Hiraoka Y, Seet WT, et al.
    Tissue Eng Part C Methods, 2022 10;28(10):557-569.
    PMID: 35615885 DOI: 10.1089/ten.TEC.2022.0073
    The use of gelatin microspheres (GMs) as a cell carrier has been extensively researched. One of its limitations is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of crosslinking agents to circumvent the constraint. Thus, this study examines two different methods of crosslinking and their effect on the microsphere's physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical (dehydrothermal [DHT]) and natural (genipin) crosslinking of the three-dimensional (3D) GM. We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in an isotonic solution, at 37°C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the crosslinking treatments. The crosslinked GM demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells. In addition, the crosslinked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that crosslinked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared with non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for crosslinking the GM to promote better cartilage tissue regeneration.
    Matched MeSH terms: Tissue Engineering/methods
  4. Vitus V, Ibrahim F, Wan Kamarul Zaman WS
    Tissue Eng Part C Methods, 2022 10;28(10):529-544.
    PMID: 35350873 DOI: 10.1089/ten.TEC.2021.022333
    Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
    Matched MeSH terms: Tissue Engineering*
  5. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
    Matched MeSH terms: Tissue Engineering/methods*; Tissue Engineering/trends
  6. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Tissue Engineering/methods*
  7. Law JX, Liau LL, Saim A, Yang Y, Idrus R
    Tissue Eng Regen Med, 2017 Dec;14(6):699-718.
    PMID: 30603521 DOI: 10.1007/s13770-017-0075-9
    Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
    Matched MeSH terms: Tissue Engineering
  8. Um Min Allah N, Berahim Z, Ahmad A, Kannan TP
    Tissue Eng Regen Med, 2017 Oct;14(5):495-505.
    PMID: 30603504 DOI: 10.1007/s13770-017-0065-y
    Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
    Matched MeSH terms: Tissue Engineering
  9. Hashim SNM, Yusof MFH, Zahari W, Noordin KBAA, Kannan TP, Hamid SSA, et al.
    Tissue Eng Regen Med, 2016 Jun;13(3):211-217.
    PMID: 30603401 DOI: 10.1007/s13770-016-9057-6
    Combination between tissue engineering and other fields has brought an innovation in the area of regenerative medicine which ultimate aims are to repair, improve, and produce a good tissue construct. The availability of many types of scaffold, both synthetically and naturally have developed into many outstanding end products that have achieved the general objective in tissue engineering. Interestingly, most of this scaffold emulates extracellular matrix (ECM) characteristics. Therefore, ECM component sparks an interest to be explored and manipulated. The ECM featured in human amniotic membrane (HAM) provides a suitable niche for the cells to adhere, grow, proliferate, migrate and differentiate, and could possibly contribute to the production of angiogenic micro-environment indirectly. Previously, HAM scaffold has been widely used to accelerate wound healing, treat bone related and ocular diseases, and involved in cardiovascular repair. Also, it has been used in the angiogenicity study, but with a different technical approach. In addition, both side of HAM could be used in cellularised and decellularised conditions depending on the objectives of a particular research. Therefore, it is of paramount importance to investigate the behavior of ECM components especially on the stromal side of HAM and further explore the angiogenic potential exhibited by this scaffold.
    Matched MeSH terms: Tissue Engineering
  10. Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, et al.
    Tissue Eng Regen Med, 2019 08;16(4):365-384.
    PMID: 31413941 DOI: 10.1007/s13770-019-00193-z
    BACKGROUND: Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering.

    METHODs: Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database.

    RESULTS: Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering.

    CONCLUSION: Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.

    Matched MeSH terms: Tissue Engineering/methods*
  11. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX
    Tissue Eng Regen Med, 2019 Dec;16(6):549-571.
    PMID: 31824819 DOI: 10.1007/s13770-019-00196-w
    BACKGROUND: Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence.

    METHODS: In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament.

    RESULTS: Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro.

    CONCLUSIONS: Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.

    Matched MeSH terms: Tissue Engineering*
  12. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH
    Tissue Cell, 2010 Oct;42(5):282-92.
    PMID: 20810142 DOI: 10.1016/j.tice.2010.07.002
    Monolayer culture expansion remains as a fundamental step to acquire sufficient number of cells for 3D constructs formation. It has been well-documented that cell expansion is however accompanied by cellular dedifferentiation. In order to promote cell growth and circumvent cellular dedifferentiation, we evaluated the effects of Transforming Growth Factor Beta-2 (TGF-β2), Insulin-like Growth Factor-I (IGF-I) and basic Fibroblast Growth Factor (bFGF) combination on articular chondrocytes culture and 'chondrocytes-fibrin' construct formation. Chondrocytes were serially cultured in: (1) F12:DMEM+10% Foetal Bovine Serum (FBS) with growth factors (FD10GFs), (2) F12:DMEM+2%FBS with the growth factors (FD2GFs) and, (3) F12:DMEM+10%FBS without growth factors (FD) as control. Cultured chondrocytes were evaluated by means of growth kinetics parameters, cell cycle analysis, quantitative phenotypic expression of collagen type II, aggrecan core protein sox-9 and collagen type I and, immunochemistry technique. Harvested chondrocytes were incorporated with plasma-derived fibrin and were polymerized to form the 3D constructs and implanted subcutaneously at the dorsum of athymic nude mice for eight (8) weeks. Resulted constructs were assigned for gross inspections and microscopic evaluation using standard histochemicals staining, immunochemistry technique and, quantitative phenotypic expression of cartilage markers to reassure cartilaginous tissue formation. Growth kinetics performance of chondrocytes cultured in three (3) types of culture media from the most to least was in the following order: FD10GFs>FD2GFs>FD. Following growth kinetics analysis, we decided to use FD10GFs and FD (control) for further evaluation and 'chondrocytes-fibrin' constructs formation. Chondrocytes cultured in FD10GFs preserved the normal diploid state (2c) with no evidence of aneuploidy, haploidy or tetraploidy. Expression of cartilage-specific markers namely collagen type II, aggrecan core protein and sox-9 were significantly higher in FD10GFs when compared to control. After implantation, 'chondrocytes-fibrin' constructs exhibited firm, white, smooth and glistening cartilage-like properties. FD10GFs constructs formed better quality cartilage-like tissue than FD constructs in term of overall cartilaginous tissue formation, cells organization and extracellular matrix distribution in the specimens. Cartilaginous tissue formation was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan was confirmed by positive Safranin O staining. Collagen type II exhibited immunopositivity at the pericellular and inter-territorial matrix area. Chondrogenic properties of the construct were further confirmed by the expression of genes encoding collagen type II, aggrecan core protein and sox9. In conclusion, FD10GFs promotes the proliferation of chondrocytes and formation of good quality 'chondrocytes-fibrin' constructs which may have potential use of matrix-induced cell implantation.
    Matched MeSH terms: Tissue Engineering/methods*
  13. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al.
    Tissue Cell, 2015 Aug;47(4):420-30.
    PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001
    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
    Matched MeSH terms: Tissue Engineering*
  14. Kamarul T, Krishnamurithy G, Salih ND, Ibrahim NS, Raghavendran HR, Suhaeb AR, et al.
    ScientificWorldJournal, 2014;2014:905103.
    PMID: 25298970 DOI: 10.1155/2014/905103
    The in vivo biocompatibility and toxicity of PVA/NOCC scaffold were tested by comparing them with those of a biocompatible inert material HAM in a rat model. On Day 5, changes in the blood parameters of the PVA/NOCC-implanted rats were significantly higher than those of the control. The levels of potassium, creatinine, total protein, A/G, hemoglobulin, erythrocytes, WBC, and platelets were not significantly altered in the HAM-implanted rats, when compared with those in the control. On Day 10, an increase in potassium, urea, and GGT levels and a decrease in ALP, platelet, and eosinophil levels were noted in the PVA/NOCC-implanted rats, when compared with control. These changes were almost similar to those noted in the HAM-implanted rats, except for the unaltered potassium and increased neutrophil levels. On Day 15, the total protein, A/G, lymphocyte, monocyte, and eosinophil levels remained unaltered in the PVA/NOCC-implanted rats, whereas urea, A/G, WBC, lymphocyte, and monocyte levels remained unchanged in the HAM-implanted rats. Histology and immunohistochemistry analyses revealed inflammatory infiltration in the PVA/NOCC-implanted rats, but not in the HAM-implanted rats. Although a low toxic tissue response was observed in the PVA/NOCC-implanted rats, further studies are necessary to justify the use of this material in tissue engineering applications.
    Matched MeSH terms: Tissue Engineering/methods*
  15. Sukmana I
    ScientificWorldJournal, 2012;2012:201352.
    PMID: 22623881 DOI: 10.1100/2012/201352
    The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined.
    Matched MeSH terms: Tissue Engineering/methods*
  16. Dele-Afolabi, Temitope T., Azmah M.A. Hanim, Norkhairunnisa Mazlan, Shafreeza Sobri, Calin, Recep
    MyJurnal
    Porous ceramic components with decently controlled porosity offers remarkable advantages in industrial and structural applications such as fluid filtration, thermal insulation and scaffolds for bone tissue engineering. In this review study of porous ceramic components, requisite processing techniques necessary for the development of porous ceramics with imbued microstructural model intended for a specific application. An appraisal of the fabrication was made with respect to their economic viability wherein cost effective methods having great potentials in decently controlling the pore network imbued within the host ceramic matrix was preferred over the capital intensive counterparts.
    Matched MeSH terms: Tissue Engineering
  17. Ruszymah BH, Izham BA, Heikal MY, Khor SF, Fauzi MB, Aminuddin BS
    Med J Malaysia, 2011 Dec;66(5):440-2.
    PMID: 22390097 MyJurnal
    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.
    Matched MeSH terms: Tissue Engineering/methods*
  18. Mustaffa R, Besar I, Andanastuti M
    Med J Malaysia, 2008 Jul;63 Suppl A:95-6.
    PMID: 19025001
    In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made.
    Matched MeSH terms: Tissue Engineering*
  19. Hazmi AJ, Zuki AB, Noordin MM, Jalila A, Norimah Y
    Med J Malaysia, 2008 Jul;63 Suppl A:93-4.
    PMID: 19025000
    This study was conducted based on the hypothesis that mineral and physicochemical properties of cockle shells similarly resemble the properties of corals (Porites sp.). Hence, the mineral and physicochemical evaluations of cockle shells were conducted to support the aforementioned hypothesis. The results indicated that cockle shells and coral exoskeleton shared similar mineral and physicochemical properties.
    Matched MeSH terms: Tissue Engineering*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links