Displaying publications 1 - 20 of 316 in total

Abstract:
Sort:
  1. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Tissue Engineering
  2. Farea M, Husein A, Halim AS, Abdullah NA, Mokhtar KI, Lim CK, et al.
    Arch Oral Biol, 2014 Dec;59(12):1400-11.
    PMID: 25222336 DOI: 10.1016/j.archoralbio.2014.08.015
    Multipotent stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for tissue regeneration. In the present study we decided to test the inductive effect of chitosan and transforming growth factor-β1 (TGFβ1) as a scaffold/factor combination on SHED proliferation and osteogenic differentiation.
    Matched MeSH terms: Tissue Engineering
  3. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
    Matched MeSH terms: Tissue Engineering
  4. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Tissue Engineering
  5. Tan SL, Ahmad RE, Ahmad TS, Merican AM, Abbas AA, Ng WM, et al.
    Cells Tissues Organs (Print), 2012;196(4):325-38.
    PMID: 22653337
    The use of growth differentiation factor 5 (GDF-5) in damaged tendons has been shown to improve tendon repair. It has been hypothesized that further improvements may be achieved when GDF-5 is used to promote cell proliferation and induce tenogenic differentiation in human bone marrow-derived mesenchymal stem cells (hMSCs). However, the optimal conditions required to produce these effects on hMSCs have not been demonstrated in previous studies. A study to determine cell proliferation and tenogenic differentiation in hMSCs exposed to different concentrations of GDF-5 (0, 5, 25, 50, 100 and 500 ng/ml) was thus conducted. No significant changes were observed in the cell proliferation rate in hMSCs treated at different concentrations of GDF-5. GDF-5 appeared to induce tenogenic differentiation at 100 ng/ml, as reflected by (1) a significant increase in total collagen expression, similar to that of the primary native human tenocyte culture; (2) a significant upregulation in candidate tenogenic marker gene expression, i.e. scleraxis, tenascin-C and type-I collagen; (3) the ratio of type-I collagen to type-III collagen expression was elevated to levels similar to that of human tenocyte cultures, and (4) a significant downregulation of the non-tenogenic marker genes runt-related transcription factor 2 and sex determining region Y (SRY)-box 9 at day 7 of GDF-5 induction, further excluding hMSC differentiation into other lineages. In conclusion, GDF-5 does not alter the proliferation rates of hMSCs, but, instead, induces an optimal tenogenic differentiation response at 100 ng/ml.
    Matched MeSH terms: Tissue Engineering
  6. Chai WL, Moharamzadeh K, Brook IM, Emanuelsson L, Palmquist A, van Noort R
    J. Periodontol., 2010 Aug;81(8):1187-95.
    PMID: 20450401 DOI: 10.1902/jop.2010.090648
    In dental implant treatment, the long-term prognosis is dependent on the biologic seal formed by the soft tissue around the implant. The in vitro investigation of the implant-soft tissue interface is usually carried out using a monolayer cell-culture model that lacks a polarized-cell phenotype. This study developed a tissue-engineered three-dimensional oral mucosal model (3D OMM) to investigate the implant-soft tissue interface.
    Matched MeSH terms: Tissue Engineering
  7. Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RB
    Arch Med Res, 2012 Jan;43(1):83-8.
    PMID: 22374243 DOI: 10.1016/j.arcmed.2012.01.012
    BACKGROUND AND AIMS: Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs).

    METHODS: Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test.

    RESULTS: Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium.

    CONCLUSIONS: These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future.

    Matched MeSH terms: Tissue Engineering
  8. Nam HY, Balaji Raghavendran HR, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T
    PLoS One, 2017;12(6):e0178117.
    PMID: 28654695 DOI: 10.1371/journal.pone.0178117
    The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications.
    Matched MeSH terms: Tissue Engineering
  9. Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Kamarul T
    Platelets, 2019;30(1):66-74.
    PMID: 29090639 DOI: 10.1080/09537104.2017.1371287
    Platelet-rich concentrate (PRC), used in conjunction with other chondroinductive growth factors, have been shown to induce chondrogenesis of human mesenchymal stromal cells (hMSC) in pellet culture. However, pellet culture systems promote cell hypertrophy and the presence of other chondroinductive growth factors in the culture media used in previous studies obscures accurate determination of the effect of platelet itself in inducing chondrogenic differentiation. Hence, this study aimed to investigate the effect of PRC alone in enhancing the chondrogenic differentiation potential of human mesenchymal stromal cells (hMSC) encapsulated in three-dimensional alginate constructs. Cells encapsulated in alginate were cultured in serum-free medium supplemented with only 15% PRC. Scanning electron microscopy was used to determine the cell morphology. Chondrogenic molecular signature of hMSCs was determined by quantitative real-time PCR and verified at protein levels via immunohistochemistry and enzyme-linked immunosorbent assay. Results showed that the cells cultured in the presence of PRC for 24 days maintained a chondrocytic phenotype and demonstrated minimal upregulation of cartilaginous extracellular matrix (ECM) marker genes (SOX9, TNC, COL2, ACAN, COMP) and reduced expression of chondrocyte hypertrophy genes (Col X, Runx2) compared to the standard chondrogenic medium (p 
    Matched MeSH terms: Tissue Engineering
  10. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    Matched MeSH terms: Tissue Engineering
  11. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M
    J Biomater Appl, 2015 Feb;29(7):1014-27.
    PMID: 25186524 DOI: 10.1177/0885328214549818
    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
    Matched MeSH terms: Tissue Engineering
  12. Ng AM, Kojima K, Kodoma S, Ruszymah BH, Aminuddin BS, Vacanti AC
    Med J Malaysia, 2008 Jul;63 Suppl A:121-2.
    PMID: 19025015
    Bone marrow derived progenitor cells have been widely studied for its multipotent property and have proofed to be an important resource in regenerative medicine. However, the propagation of murine bone marrow appeared to be a great challenge as compared to other mammalian species. In this study, various isolation techniques and the plasticity of the isolated cells were evaluated. Our result shows that magnetic sorting technique yielded the most viable cells and displayed wider differentiation capacity.
    Matched MeSH terms: Tissue Engineering
  13. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Tissue Engineering
  14. Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T
    Panminerva Med, 2018 Dec;60(4):237-238.
    PMID: 30563307 DOI: 10.23736/S0031-0808.18.03435-3
    Matched MeSH terms: Tissue Engineering
  15. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
    Matched MeSH terms: Tissue Engineering
  16. Ude CC, Chen HC, Norhamdan MY, Azizi BM, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Sep;18(3):355-367.
    PMID: 28667462 DOI: 10.1007/s10561-017-9638-1
    In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell's chondrogenic induction.
    Matched MeSH terms: Tissue Engineering
  17. Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al.
    J Biomater Sci Polym Ed, 2018 12;29(17):2051-2067.
    PMID: 29983100 DOI: 10.1080/09205063.2018.1485814
    Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p 
    Matched MeSH terms: Tissue Engineering
  18. Latfi ASA, Pramanik S, Poon CT, Gumel AM, Lai KW, Annuar MSM, et al.
    J Biomater Appl, 2019 01;33(6):854-865.
    PMID: 30458659 DOI: 10.1177/0885328218812490
    Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self)fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
    Matched MeSH terms: Tissue Engineering
  19. Ullah S, Zainol I, Idrus RH
    Int J Biol Macromol, 2017 Nov;104(Pt A):1020-1029.
    PMID: 28668615 DOI: 10.1016/j.ijbiomac.2017.06.080
    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds.
    Matched MeSH terms: Tissue Engineering
  20. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
    Matched MeSH terms: Tissue Engineering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links