Displaying publications 1 - 20 of 362 in total

Abstract:
Sort:
  1. Imron MF, Hestianingsi WOA, Putranto TWC, Citrasari N, Abdullah SRS, Hasan HA, et al.
    Chemosphere, 2024 Apr;353:141595.
    PMID: 38438021 DOI: 10.1016/j.chemosphere.2024.141595
    Increasing aquaculture cultivation produces large quantities of wastewater. If not handled properly, it can have negative impacts on the environment. Constructed wetlands (CWs) are one of the phytoremediation methods that can be applied to treat aquaculture effluent. This research was aimed at determining the performance of Cyperus rotundus in removing COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate from the batch CW system. Treatment was carried out for 30 days with variations in the number of plants (10, 15, and 20) and variations in media height (10, 12, and 14 cm). The result showed that aquaculture effluent contains high levels of organic compounds and nutrients, and C. rotundus can grow and thrive in 100% of aquaculture effluent. Besides that, the use of C. rotundus in CWs with the effect of numbers of plants and media height showed performance of COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate with 70, 79, 90, 96, 64, 82, 92, and 48% of removal efficacy, respectively. There was no negative impact observed on C. rotundus growth after exposure to aquaculture effluent, as indicated by the increase in wet weight, dry weight, and growth rate when compared to the control. Thus, adding aquaculture effluent to CWs planted with C. rotundus supports the growth and development of plants while also performing phytoremediation.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  2. Me MFH, Ang WL, Othman AR, Mohammad AW, Nasharuddin AAA, Aris AM, et al.
    Environ Monit Assess, 2024 Mar 14;196(4):366.
    PMID: 38483639 DOI: 10.1007/s10661-024-12526-0
    Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater. Lab-scale operation shows the biosensor was successfully enriched with (1) local University Kebangsaan Malaysia's, microbial community strain collection and (2) local municipal wastewater microflora, operated for more than 50 days with a stable yet responsive carbon consumption rate (CCR) signal. Meanwhile, two independent biosensors were also enriched and operated in Indah Water Research Centre's crude sewage holding tank, showing a stable response to the wastewater. Next, a pilot scale setup was constructed to test the enriched biosensors for the spiked-pollutant test. The biosensors showed a proportional CCR response (pollutant presence detected) towards several organic compounds in the sewage, including ethanol, chicken blood, and dilution of tested sewage but less to curry powder, methanol, and isopropanol. Conversely, there was no significant response (pollutant presence not detected) towards hexane, Congo red, engine oil, and paint, which may be due to their non-biodegradability and/or insoluble nature. Additionally, the biosensors were exposed to air for 6 h to assess their robustness towards aerobic shock with a positive result. Overall, the study suggested that the biosensor could be a powerful monitoring tool, given its responsiveness towards organic compounds in sewage under normal conditions.
    Matched MeSH terms: Waste Disposal, Fluid
  3. Vijayan V, Joseph CG, Taufiq-Yap YH, Gansau JA, Nga JLH, Li Puma G, et al.
    Environ Pollut, 2024 Feb 01;342:123099.
    PMID: 38070640 DOI: 10.1016/j.envpol.2023.123099
    Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source. The same rivers are also used as a water source for many villages situated along the river banks. As such, it is imperative to degrade POME before its disposal into the water bodies for obvious reasons. The treatment methods used so far include the biological processes such as open ponding/land application, which consist of aerobic as well as anaerobic ponds, physicochemical treatment including membrane technology, adsorption and coagulation are successful for the mitigation of contaminants. As the above methods require large working area and it takes more time for contaminant degradation, and in consideration of the strict environmental policies as well as palm oil being the most sort of vegetable oil in several countries, numerous researchers have concentrated on the emerging technologies such as advanced oxidation processes (AOPs) to remediate POME. Methods such as the photocatalysis, Fenton process, sonocatalysis, sonophotocatalysis, ozonation have attained special importance for the degradation of POME because of their efficiency in complete mineralization of organic pollutants in situ. This review outlines the AOP technologies currently available for the mineralization of POME with importance given to sonophotocatalysis and ozonation as these treatment process removes the need to transfer the pollutant while possibly degrading the organic matter sufficiently to be used in other industry like fertilizer manufacturing.
    Matched MeSH terms: Waste Disposal, Fluid
  4. Asrami MR, Pirouzi A, Nosrati M, Hajipour A, Zahmatkesh S
    Chemosphere, 2024 Jan;347:140652.
    PMID: 37967679 DOI: 10.1016/j.chemosphere.2023.140652
    Although algal-based membrane bioreactors (AMBRs) have been demonstrated to be effective in treating wastewater (landfill leachate), there needs to be more research into the effectiveness of these systems. This study aims to determine whether AMBR is effective in treating landfill leachate with hydraulic retention times (HRTs) of 8, 12, 14, 16, 21, and 24 h to maximize AMBR's energy efficiency, microalgal biomass production, and removal efficiency using artificial neural network (ANN) models. Experimental results and simulations indicate that biomass production in bioreactors depends heavily on HRT. A decrease in HRT increases algal (Chlorella vulgaris) biomass productivity. Results also showed that 80% of chemical oxygen demand (COD) was removed from algal biomass by bioreactors. To determine the most efficient way to process the features as mentioned above, nondominated sorting genetic algorithm II (NSGA-II) techniques were applied. A mesophilic, suspended-thermophilic, and attached-thermophilic organic loading rate (OLR) of 1.28, 1.06, and 2 kg/m3/day was obtained for each method. Compared to suspended-thermophilic growth (3.43 kg/m3.day) and mesophilic growth (1.28 kg/m3.day), attached-thermophilic growth has a critical loading rate of 10.5 kg/m3.day. An energy audit and an assessment of the system's auto-thermality were performed at the end of the calculation using the Monod equation for biomass production rate (Y) and bacteria death constant (Kd). According to the results, a high removal level of COD (at least 4000 mg COD/liter) leads to auto-thermality.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  5. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
    Matched MeSH terms: Waste Disposal, Fluid*
  6. Amirah Mohd Napi NN, Ibrahim N, Adli Hanif M, Hasan M, Dahalan FA, Syafiuddin A, et al.
    Bioengineered, 2023 Dec;14(1):2276391.
    PMID: 37942779 DOI: 10.1080/21655979.2023.2276391
    Microplastic (MP) is an emerging contaminant of concern due to its abundance in the environment. Wastewater treatment plant (WWTP) can be considered as one of the main sources of microplastics in freshwater due to its inefficiency in the complete removal of small MPs. In this study, a column-based MP removal which could serve as a tertiary treatment in WWTPs is evaluated using granular activated carbon (GAC) as adsorbent/filter media, eliminating clogging problems commonly caused by powder form activated carbon (PAC). The GAC is characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and contact angle measurement to determine the influence of its properties on MP removal efficiency. MPs (40-48 μm) removal up to 95.5% was observed with 0.2 g/L MP, which is the lowest concentration tested in this work, but still higher than commonly used MP concentration in other studies. The performance is reduced with further increase in MP concentration (up to 1.0 g/L), but increasing the GAC bed length from 7.5 to 17.5 cm could lead to better removal efficiencies. MP particles are immobilized by the GAC predominantly by filtration process by being entangled with small GAC particles/chips or stuck between the GAC particles. MPs are insignificantly removed by adsorption process through entrapment in GAC porous structure or attachment onto the GAC surface.
    Matched MeSH terms: Waste Disposal, Fluid
  7. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
    Matched MeSH terms: Waste Disposal, Fluid
  8. Wei Y, Wang D, Li G, Yu H, Dong X, Jiang H
    Water Sci Technol, 2023 Nov;88(10):2566-2580.
    PMID: 38017678 DOI: 10.2166/wst.2023.365
    In recent years, chemical water treatment equipment has gained significant attention due to its environmental-friendly features, multifunctionality, and broad applicability. Recognizing the limitations of existing chemical treatment equipment, such as challenges in scale removal and the high water content in scale deposits, we propose a novel drum design for both anode and cathode, enabling simultaneous scale suction and dehydration. We constructed a small experimental platform to validate the equipment's performance based on our model. Notably, under the optimal operating parameters, the hardness removal rate for circulating water falls within the range of 19.6-24.46%. Moreover, the scale accumulation rate per unit area and unit time reaches 13.7 g h-1 m-2. Additionally, the energy consumption per unit weight of the scale remains impressively low at 0.16 kWh g-1. Furthermore, the chemical oxygen demand (COD) concentration decreased from an initial 106.0 mg L-1 to a mere 18.8 mg L-1, resulting in a remarkable total removal rate of 82.26%. In conclusion, our innovative electrochemical water treatment equipment demonstrates exceptional performance in scale removal, organic matter degradation, and water resource conservation, offering valuable insights for future research and development in chemical treatment equipment and electrochemical theory.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  9. Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K
    J Environ Manage, 2023 Oct 15;344:118501.
    PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501
    This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
    Matched MeSH terms: Waste Disposal, Fluid
  10. Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T
    J Appl Microbiol, 2023 Oct 04;134(10).
    PMID: 37757470 DOI: 10.1093/jambio/lxad219
    AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers.

    METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR  4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites.

    CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.

    Matched MeSH terms: Waste Disposal, Fluid/methods
  11. Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, et al.
    Chemosphere, 2023 Oct;339:139693.
    PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693
    Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  12. Jagaba AH, Lawal IM, Ghfar AA, Usman AK, Yaro NSA, Noor A, et al.
    Chemosphere, 2023 Oct;339:139620.
    PMID: 37524265 DOI: 10.1016/j.chemosphere.2023.139620
    Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  13. Nuid M, Aris A, Abdullah S, Fulazzaky MA, Muda K
    J Environ Manage, 2023 Sep 01;341:118032.
    PMID: 37163834 DOI: 10.1016/j.jenvman.2023.118032
    Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.
    Matched MeSH terms: Waste Disposal, Fluid*
  14. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
    Matched MeSH terms: Waste Disposal, Fluid
  15. Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, et al.
    Environ Res, 2023 Jul 15;229:115881.
    PMID: 37084947 DOI: 10.1016/j.envres.2023.115881
    Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  16. Khalil M, Hanif MA, Rashid U, Ahmad J, Alsalme A, Tsubota T
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81333-81351.
    PMID: 35710971 DOI: 10.1007/s11356-022-21367-8
    The hazardous dyes on mixing with water resources are affecting many life forms. Granite stone is popular worldwide for decorating floors, making other forms of decorative materials and items. Granite stone powder waste can be obtained free of cost from marble factories as factories spend on the disposal of this waste. In the present study, novel granite stone powder waste composite has been prepared and utilized for the effective removal of Terasil dye. Two types of granite including gray granite and white granite were used in pure, calcinized, and chemically modified forms. Freundlich adsorption isotherm model best explained the adsorption mechanism of dye removal using granite composites as compared to other adsorption isothermal models. Characterization techniques like scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used for the determination of morphological features and functional groups of granite composites. The obtained results were statistically analyzed using analysis of variance (ANOVA) along with the post hoc Tukey test. An extraordinarily high Terasil dye uptake capacity (more than 400 mg/g) was exhibited by granite composites prepared using sodium metasilicate. The synthesized novel nano-constructed composites provided a viable strategy as compared to the pure granite stone for dye removal from wastewater water.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  17. Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, et al.
    Bioprocess Biosyst Eng, 2023 Jul;46(7):995-1009.
    PMID: 37160769 DOI: 10.1007/s00449-023-02879-0
    Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
    Matched MeSH terms: Waste Disposal, Fluid
  18. Purba LDA, Zahra SA, Yuzir A, Iwamoto K, Abdullah N, Shimizu K, et al.
    J Environ Manage, 2023 May 01;333:117374.
    PMID: 36758398 DOI: 10.1016/j.jenvman.2023.117374
    Despite various research works on algal-bacterial aerobic granular sludge for wastewater treatment and resource recovery processes, limited information is available on its application in real wastewater treatment in terms of performance, microbial community variation and resource recovery. This study investigated the performance of algal-bacterial aerobic granular sludge on real low-strength wastewater treatment in addition to the characterization of microbial community and fatty acid compositions for biodiesel production. The results demonstrated 71% COD, 77% NH4+-N and 31% phosphate removal efficiencies, respectively. In addition, all the water parameters successfully met the effluent standard A, imposed by the Department of Environment (DOE) Malaysia. Core microbiome analyses revealed important microbial groups (i.e., Haliangium ochraceum, Burkholderiales and Chitinophagaceae) in bacterial community. Meanwhile the photosynthetic microorganisms, such as Oxyphotobacteria and Trebouxiophyceae dominated the algal-bacterial aerobic granular sludge, suggesting their important roles in granulation and wastewater treatment. Up to 12.51 mg/gSS lipid content was recovered from the granules. In addition, fatty acids composition showed high percetages of C16:0 and C18:0, demonstrating high feasibility to be used for biodiesel production application indicated by the cetane number, iodine value and oxidation stability properties.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  19. Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, et al.
    Environ Res, 2023 May 01;224:115527.
    PMID: 36822539 DOI: 10.1016/j.envres.2023.115527
    Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
    Matched MeSH terms: Waste Disposal, Fluid
  20. Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Dahalan FA, et al.
    Environ Sci Pollut Res Int, 2023 May;30(24):65364-65378.
    PMID: 37081370 DOI: 10.1007/s11356-023-27046-6
    Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.
    Matched MeSH terms: Waste Disposal, Fluid*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links