Displaying publications 1 - 20 of 546 in total

Abstract:
Sort:
  1. LING SHING YUN, ASMADI ALI
    MyJurnal
    At present, heavy metal pollution is a major environmental concern and the adsorption technique is a potent method for removal of these heavy metals from wastewater. Activated carbon is one of the best adsorbents for metal ionsremoval but it is sometimes restricted due to high cost and problems with regeneration hamper large scale application. Low cost adsorbent is alternatively being introduced to replace activated carbon since it is available in large quantity, renewable and inexpensive. Hence, Pennisetum purpureum(elephant grass) was investigated for its potential in cadmium ions removal. The adsorbent was characterized by Fourier Transforms Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) analyses.The effects of pH (1 to 5), initial metal ion concentration (5 to 25 mg/L), contact time (10 to 60 minutes) and adsorbent dosage (0.2 to 1.0 g) on cadmium ions removal were conducted by batch adsorption experiments. In this study, the FT-IR results demonstrated that the functional groups for untreated and nitric acid-treated P. purpureum mainly consisted of carbonyl, carboxyl, hydroxyl and amine groups which are able to bind with positively charged cadmium ions. SEM micrographs have proven that nitric acid modification would remove the surface impurities of P. purpureum, which increased the surface roughness, produced deep, open pores and better pore size distribution. From the BET and BJH analyses, the treated P. purpureum was mesoporous, had larger surface area and pore volume compared to untreated P. purpureum. The best pH, adsorbent dosage and contact time were pH 4, 0.6 g and 30 minutes, respectively. The highest removal percentage of cadmium ions for both untreated and treated P. purpureum were 92% and 98% correspondingly. The results shown strengthened the fact that both biosorbents have great potential in cadmium ions removal.
    Matched MeSH terms: Waste Water
  2. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A
    Water Sci Technol, 2014 10 18;70(7):1161-7.
    PMID: 25325539 DOI: 10.2166/wst.2014.343
    Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.
    Matched MeSH terms: Waste Water
  3. Naje AS, Chelliapan S, Zakaria Z, Abbas SA
    J Environ Manage, 2016 Jul 1;176:34-44.
    PMID: 27039362 DOI: 10.1016/j.jenvman.2016.03.034
    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption.
    Matched MeSH terms: Waste Water
  4. Muhamad MH, Sheikh Abdullah SR, Abu Hasan H, Abd Rahim RA
    J Environ Manage, 2015 Nov 1;163:115-24.
    PMID: 26311084 DOI: 10.1016/j.jenvman.2015.08.012
    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.
    Matched MeSH terms: Waste Water
  5. Alomari. Nashwan K., Badronnisa Yusuf, Thamer Ahmed Mohammed Ali, Abdul Halim Ghazali
    MyJurnal
    Branching channel flow refers to any side water withdrawals from rivers or main channels.
    Branching channels have wide application in many practical projects, such as irrigation and drainage
    network systems, water and waste water treatment plants, and many water resources projects. In the
    last decades, extensive theoretical and experimental investigations of the branching open channels
    have been carried out to understand the characteristics of this branching flow, varying from case
    studies to theoretical and experimental investigations. The objectives of this paper are to review and
    summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
    based on flow characteristics, physical characteristics, and modeling of the branching flow.
    Investigations of the flow into branching channel show that the branching discharge depends on many
    interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
    number at the upstream of the branch channel junction. Also it increases with the increasing of the
    branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
    the main channel water depth. The flow diversion to the branch channel leads to an increase of water
    depth at the downstream of the main channel. From the review, it is important to highlight that most
    of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
    Investigations on different branching angles with movable bed have still to be explored.
    Matched MeSH terms: Waste Water
  6. Darwish M, Aris A, Puteh MH, Jusoh MNH, Abdul Kadir A
    J Environ Manage, 2017 Dec 01;203(Pt 2):861-866.
    PMID: 26935149 DOI: 10.1016/j.jenvman.2016.02.033
    Struvite precipitation has been widely applied for the removal of ammonium-nitrogen (NH4-N) from wastewater. Due to the high cost of phosphorus (P) reagents, the current research trend was directed to find alternative sources of P, in order to maintain a sustainable NH4-N removal process. The current study investigated waste bones ashes as alternative sources of P. Different types of bones' ashes were characterized, in which the ash produced from waste fish bones was the highest in P content (17%wt.). The optimization of the factors affecting P extraction from ash by acidic leaching showed that applying 2M H2SO4 and 1.25 kg H2SO4/kg ash achieved the highest P recovery (95%). Thereafter, the recovered P was successfully used in struvite precipitation, which achieved more than 90% NH4-N removal and high purity struvite.
    Matched MeSH terms: Waste Water
  7. Kamaruddin AF, Sanagi MM, Wan Ibrahim WA, Md Shukri DS, Abdul Keyon AS
    J Sep Sci, 2017 Nov;40(21):4256-4263.
    PMID: 28851082 DOI: 10.1002/jssc.201700659
    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations 
    Matched MeSH terms: Waste Water
  8. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Waste Water/chemistry
  9. Noruzman AH, Muhammad B, Ismail M, Abdul-Majid Z
    J Environ Manage, 2012 Nov 15;110:27-32.
    PMID: 22705857 DOI: 10.1016/j.jenvman.2012.05.019
    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
    Matched MeSH terms: Waste Water/analysis*; Waste Water/chemistry*
  10. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Waste Water/chemistry*
  11. Jun LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, et al.
    Environ Pollut, 2020 Apr;259:113940.
    PMID: 31931415 DOI: 10.1016/j.envpol.2020.113940
    Jicama peroxidase (JP) was covalently immobilized onto functionalized multi-walled carbon nanotube (MWCNT) Buckypaper/Polyvinyl alcohol (BP/PVA) membrane and employed for degradation of methylene blue dye. The parameters of the isotherm and kinetic models are estimating using ant colony optimization (ACO), which do not meddle the non-linearity form of the respective models. The proposed inverse modelling through ACO optimization was implemented, and the parameters were evaluated to minimize the non-linear error functions. The adsorption of MB dye onto JP-immobilized BP/PVA membrane follows Freundlich isotherm model (R2 = 0.99) and the pseudo 1st order or 2nd kinetic model (R2 = 0.980 & 0.968 respectively). The model predictions from the parameters estimated by ACO resulted values close the experimental values, thus inferring that this approach captured the inherent characteristics of MB adsorption. Moreover, the thermodynamic studies indicated that the adsorption was favourable, spontaneous, and exothermic in nature. The comprehensive structural analyses have confirmed the successful binding of peroxidase onto BP/PVA membrane, as well as the effective MB dye removal using immobilized JP membrane. Compared to BP/PVA membrane, the reusability test revealed that JP-immobilized BP/PVA membrane has better dye removal performances as it can retain 64% of its dye removal efficiency even after eight consecutive cycles. Therefore, the experimental results along with modelling results demonstrated that JP-immobilized BP/PVA membrane is expected to bring notable impacts for the development of effective green and sustainable wastewater treatment technologies.
    Matched MeSH terms: Waste Water
  12. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
    Matched MeSH terms: Waste Water
  13. Chai JB, Au PI, Mubarak NM, Khalid M, Ng WP, Jagadish P, et al.
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13949-13962.
    PMID: 32036527 DOI: 10.1007/s11356-020-07755-y
    Adsorption capacity and percentage removal efficiency of Cu(II) and Ni(II) ions were studied and compared between raw kaolinite and acid-activated kaolinite. Acid-activated kaolin was prepared by refluxing raw kaolinite with concentrated sulphuric acid followed by calcination to enhance its surface properties and adsorption ability. Both raw and acid-activated kaolinite samples were characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron micrograph and zeta potential analysis. Upon acid treatment, acid-activated kaolinite was discovered to have altered chemical composition and larger BET surface area as compared with raw kaolinite. The batch adsorption studies on aqueous solution were performed under different factors such as contact time, pH condition, adsorbent dosage, initial metal ion concentration and temperature. The optimum condition was selected for each factor including a contact time of 60 min, pH of 7.0, adsorbent dosage of 0.1 g, initial metal ion concentration of 100 mg/L and temperature of 25 °C. Then, the adsorption studies on wastewater samples were carried out at the selected optimum conditions. Acid-activated kaolinite always had better adsorption capacity and percentage removal efficiency than raw kaolinite due to the increasing amount of negative charges on the adsorbent surface and the number of metal ion binding sites upon acid treatment. The adsorption kinetic obtained was well described by the pseudo-second-order model, whereas the adsorption isotherms obtained were well described by either the Freundlich or the Langmuir adsorption model. The results showed that acid-activated kaolinite adsorbent is a better option as a favourable and feasible commercial low-cost adsorbent for wastewater treatment.
    Matched MeSH terms: Waste Water
  14. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M
    Materials (Basel), 2019 Sep 08;12(18).
    PMID: 31500398 DOI: 10.3390/ma12182903
    In this study, simultaneous adsorption of cationic dyes was investigated by using binary component solutions. Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TMPAA) polymer was used as an adsorbent for uptake of cationic dyes (malachite green, MG and methylene blue, MB) from aqueous solution in a binary system. Adsorption tests revealed that TMPAA presented high adsorption of MG and MB at higher pH and higher dye concentrations. It suggested that there are strong electrostatic attractions between the surface functional groups of the adsorbent and cationic dyes. The equilibrium analyses explain that both extended Langmuir and extended models are suitable for the description of adsorption data in the binary system. An antagonistic effect was found, probably due to triangular (MG) and linear (MB) molecular structures that mutually hinder the adsorption of both dyes on TMPAA. Besides, the kinetic studies for sorption of MG and MB dyes onto adsorbent were better represented by a pseudo-second-order model, which demonstrates chemisorption between the polymeric TMPAA adsorbent and dye molecules. According to experimental findings, TMPAA is an attractive adsorbent for treatment of wastewater containing multiple cationic dyes.
    Matched MeSH terms: Waste Water
  15. Rahman ML, Wong ZJ, Sarjadi MS, Joseph CG, Arshad SE, Musta B, et al.
    Polymers (Basel), 2021 May 06;13(9).
    PMID: 34066308 DOI: 10.3390/polym13091486
    Toxic metals in the industrial wastewaters have been liable for drastic pollution hence a powerful and economical treatment technology is needed for water purification. For this reason, some pure cellulosic materials were derived from waste fiber to obtain an economical adsorbent for wastewater treatment. Conversion of cellulose into grafting materials such as poly(methyl acrylate)-grafted cellulose was performed by free radical grafting process. Consequently, poly(hydroxamic acid) ligand was produced from the grafted cellulose. The intermediate products and poly(hydroxamic acid) ligand were analyzed by FT-IR, FE-SEM, TEM, EDX, and XPS spectroscopy. The adsorption capacity (qe) of some toxic metals ions by the polymer ligand was found to be excellent, e.g., copper capacity (qe) was 346.7 mg·g-1 at pH 6. On the other hand, several metal ions such as cobalt chromium and nickel also demonstrated noteworthy sorption capacity at pH 6. The adsorption mechanism obeyed the pseudo second-order rate kinetic model due to the satisfactory correlated experimental sorption values (qe). Langmuir model isotherm study showed the significant correlation coefficient with all metal ions (R2 > 0.99), indicating that the single or monolayer adsorption was the dominant mode on the surface of the adsorbent. This polymer ligand showed good properties on reusability. The result shows that the adsorbent may be recycled for 6 cycles without any dropping of starting sorption capabilities. This polymeric ligand showed outstanding toxic metals removal magnitude, up to 90-99% of toxic metal ions can be removed from industrial wastewater.
    Matched MeSH terms: Waste Water
  16. Hameed YT, Idris A, Hussain SA, Abdullah N
    J Environ Manage, 2016 Dec 15;184(Pt 3):494-503.
    PMID: 27789092 DOI: 10.1016/j.jenvman.2016.10.033
    Chemical composition and flocculation efficiency were investigated for a commercially produced tannin - based coagulant and flocculant (Tanfloc). The results of Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive Spectroscopy (EDX) confirmed what claimed about the chemical composition of Tanfloc. For moderate polluted municipal wastewater investigated in both jar test and pilot plant, Tanfloc showed high turbidity removal efficiency of approximately 90%, while removal efficiencies of BOD5 and COD were around 60%. According to floc size distribution, Tanfloc was able to show distinct performance compared to Polyaluminum chloride (PAC). While 90% of flocs produced by Tanfloc were smaller than 144 micron, they were smaller than 96 micron for PAC. Practically, zeta potential measurement showed the cationic nature of Tanfloc and suggested coincidence of charge neutralization and another flocculation mechanism (bridging or patch flocculation). Sludge Volumetric Index (SVI) measurements were in agreement with the numbers found in the literature, and they were less than 160 mL/g. Calcium cation as flocculation aid showed significant improvement of flocculation efficiency compared to other cations. Finally Tanfloc showed competing performance compared to PAC in terms of turbidity, BOD5 and COD removal, floc size and sludge characteristics.
    Matched MeSH terms: Waste Water/chemistry*
  17. Tijani H, Yuzir A, Abdullah N
    Waste Manag, 2018 Aug;78:770-780.
    PMID: 32559969 DOI: 10.1016/j.wasman.2018.06.045
    In this study, a two-stage domesticated shear-loop anaerobic contact stabilization (SLACS) system is introduced as a new reactor design to enhance methane productivity with significant reduction in hydrogen sulphide (H2S) synthesis. Due to the rich sulfate content in industrial wastewaters, the initial fermentation phase of anaerobic digestion is highly acidifying and often leads to severe performance losses, digester's instability, and even culture crash. The SLACS system functions as a dissimilatory sulfate reduction - methanogenic reactor consisting of two compartments, a shear-loop anaerobic bed (SLAB) unit and an anaerobic plug flow (APF) unit. The functional role of the SLAB unit is not limited to acidogenesis but also sulfidogenic processes, which curtails H2S generation in the APF unit (methanogenic stage). Experimental observations indicated that pH serves a critical role in the cohabitation of acidogenic and sulfidogenic microbes in the SLAB unit. Although acidogenesis was not influenced by pH within the range of 4.5-6.0, it is vital to stabilize the pH of this unit at 5.4 to establish a steady sulfate reduction of above 75%. The highest desulfurization achieved in this compartment was 88% under a hydraulic retention time (HRT) of 4 h. With an average methane productivity of 256 mL g-1 VS, the methanogenic performance of the two-stage domesticated SLACS system shows a 32% methanogenic proficiency higher than that of the one-stage digestion system. Microbial community structure within the system carried out via Next Generation Sequencing (NGS) provided qualitative data on the sludge's sulfidogenic and methanogenic performance.
    Matched MeSH terms: Waste Water
  18. Purwanti IF, Kurniawan SB, Ismail N', Imron MF, Abdullah SRS
    J Environ Manage, 2019 Nov 01;249:109412.
    PMID: 31445374 DOI: 10.1016/j.jenvman.2019.109412
    This paper elucidates the capability of isolated indigenous bacteria to remove aluminium from wastewater and soil. Two indigenous species of Brochothrix thermosphacta and Vibrio alginolyticus were isolated from an aluminium-contaminated site. These two species were used to treat aluminium-containing wastewater and contaminated soil using the bioaugmentation method. B. thermosphacta showed the highest aluminium removal of 57.87 ± 0.45% while V. alginolyticus can remove aluminium up to 59.72 ± 0.33% from wastewater. For aluminium-contaminated soil, B. thermosphacta and V. alginolyticus, showed a highest removal of only 4.58 ± 0.44% and 5.48 ± 0.58%, respectively. The bioaugmentation method is more suitable to be used to treat aluminium in wastewater compared to contaminated soil. The produced biomass separation after wastewater treatment was so much easier and applicable, compared to the produced biomass handling from contaminated soil treatment. A 48.55 ± 2.45% and 40.12 ± 4.55% of aluminium can be recovered from B. thermosphacta and V. alginolyticus biomass, respectively, with 100 mg/L initial aluminium concentration in wastewater.
    Matched MeSH terms: Waste Water*
  19. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, et al.
    Polymers (Basel), 2020 Apr 13;12(4).
    PMID: 32294999 DOI: 10.3390/polym12040903
    The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions' adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
    Matched MeSH terms: Waste Water
  20. Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(52):112575-112590.
    PMID: 37833594 DOI: 10.1007/s11356-023-30141-3
    Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
    Matched MeSH terms: Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links