Displaying publications 1 - 20 of 866 in total

Abstract:
Sort:
  1. Reghioua A, Atia D, Hamidi A, Jawad AH, Abdulhameed AS, Mbuvi HM
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130304.
    PMID: 38382796 DOI: 10.1016/j.ijbiomac.2024.130304
    This present work targets the production of an eco-friendly adsorbent (hereinafter KA/CEL) from kaolin clay functionalized with cellulose extract obtained from peanut shells. The adsorbents were used for decolorization of two different types of organic dyes (cationic: methylene blue, MB; anionic: Congo red, CR) from an aqueous environment. Several analytical methods, including Brunauer-Emmett-Teller (surface properties), Fourier Transforms infrared (functionality), scanning electron microscope, Energy dispersive X-Ray (morphology), and pHpzc test (surface charge), were used to attain the physicochemical characteristics of KA/CEL. The Box-Behnken Design (BBD) was applied to determine the crucial factors affecting adsorption performance. These included cellulose loading at 25 %, an adsorbent dose of 0.06 g, solution pH set at 10 for MB and 7 for CR, a temperature of 45 °C, and contact times of 12.5 min for MB and 20 min for CR dye. The adsorption data exhibited better agreement with the pseudo-second-order kinetic and Freundlich models. The Langmuir model estimated the monolayer capacity to be 291.5 mg/g for MB and 130.7 mg/g for CR at a temperature of 45 °C. This study's pivotal finding underscores the promising potential of KA/CEL as an effective adsorbent for treating wastewater contaminated with organic dyes.
    Matched MeSH terms: Water Pollutants, Chemical*
  2. Han F, Hessen AS, Amari A, Elboughdiri N, Zahmatkesh S
    Environ Res, 2024 Mar 15;245:117972.
    PMID: 38141913 DOI: 10.1016/j.envres.2023.117972
    Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
    Matched MeSH terms: Water Pollutants, Chemical*
  3. Biswas PP, Chen WH, Lam SS, Park YK, Chang JS, Hoang AT
    J Hazard Mater, 2024 Mar 05;465:133154.
    PMID: 38103286 DOI: 10.1016/j.jhazmat.2023.133154
    Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.
    Matched MeSH terms: Water Pollutants, Chemical*
  4. Karim AR, Danish M, Alam MG, Majeed S, Alanazi AM
    Chemosphere, 2024 Mar;351:141180.
    PMID: 38218237 DOI: 10.1016/j.chemosphere.2024.141180
    In contemporary wastewater treatment industry, advanced oxidation techniques, membrane filtration, ion exchange, and reverse osmosis are used to treat chemically loaded wastewater. All these methods required highly toxic oxidizing chemicals, high capital investment in membrane/filter materials, and the installation of sophisticated equipment. Wastewater treatment through an adsorption process using biomass-based adsorbent is economical, user-friendly, and sustainable. Neem tree waste has been explored as an adsorbent for wastewater treatment. The chemical components in the neem biomass include carbohydrates, fat, fiber, cellulose, hemicellulose, and lignin, which support the functionalization of neem biomass. Moreover, adsorbent preparation from renewable resources is not only cost-effective and environmentally friendly but also helps in waste management for sustainable growth. Contemporary researchers explored the pre- and post-surface-modified neem biomass adsorbents in scavenging the pollutants from contaminated water. This review extensively explores the activation process of neem biomass, physical and chemical methods of surface modification mechanism, and the factors affecting surface modification. The pollutant removal through pre and post-surface-modified neem biomass adsorbents was also summarized. Furthermore, it also provides a comprehensive summary of the factors that affect the adsorption performance of the neem biomass-derived adsorbents against dyes, metal ions, and other emerging pollutants. Understanding the surface-modification mechanisms and the adsorption efficiency factor of adsorbents will help in harnessing their potential for more efficiently combatting environmental pollution and making strides toward a greener and more sustainable future.
    Matched MeSH terms: Water Pollutants, Chemical*
  5. Tan H, Mong GR, Wong SL, Wong KY, Sheng DDCV, Nyakuma BB, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(1):109-126.
    PMID: 38040882 DOI: 10.1007/s11356-023-31228-7
    This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.
    Matched MeSH terms: Water Pollutants, Chemical*
  6. Goh KZ, Ahmad AA, Ahmad MA
    Environ Sci Pollut Res Int, 2024 Jan;31(1):1158-1176.
    PMID: 38038911 DOI: 10.1007/s11356-023-31177-1
    This study aimed to assess the dynamic simulation models provided by Aspen adsorption (ASPAD) and artificial neural network (ANN) in understanding the adsorption behavior of atenolol (ATN) on gasified Glyricidia sepium woodchips activated carbon (GGSWAC) within fixed bed columns for wastewater treatment. The findings demonstrated that increasing the bed height from 1 to 3 cm extended breakthrough and exhaustion times while enhancing adsorption capacity. Conversely, higher initial ATN concentrations resulted in shorter breakthrough and exhaustion times but increased adsorption capacity. Elevated influent flow rates reduced breakthrough and exhaustion times while maintaining constant adsorption capacity. The ASPAD software demonstrated competence in accurately modeling the crucial exhaustion points. However, there is room for enhancement in forecasting breakthrough times, as it exhibited deviations ranging from 6.52 to 239.53% when compared to the actual experimental data. ANN models in both MATLAB and Python demonstrated precise predictive abilities, with the Python model (R2 = 0.985) outperforming the MATLAB model (R2 = 0.9691). The Python ANN also exhibited superior fitting performance with lower MSE and MAE. The most influential factor was the initial ATN concentration (28.96%), followed by bed height (26.39%), influent flow rate (22.43%), and total effluent time (22.22%). The findings of this study offer an extensive comprehension of breakthrough patterns and enable accurate forecasts of column performance.
    Matched MeSH terms: Water Pollutants, Chemical*
  7. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Water Pollutants, Chemical*
  8. Jawad AH, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Algburi S
    Int J Phytoremediation, 2024;26(5):727-739.
    PMID: 37817463 DOI: 10.1080/15226514.2023.2262040
    In this study, the focus was on utilizing tropical plant biomass waste, specifically bamboo (BB), as a sustainable precursor for the production of activated carbon (BBAC) via pyrolysis-induced K2CO3 activation. The potential application of BBAC as an effective adsorbent for the removal of methylene blue (MB) dye from aqueous solutions was investigated. Response surface methodology (RSM) was employed to evaluate key adsorption characteristics, which included BBAC dosage (A: 0.02-0.08 g/L), pH (B: 4-10), and time (C: 2-8 min). The adsorption isotherm analysis revealed that the adsorption of MB followed the Freundlich model. Moreover, the kinetic data were well-described by the pseudo-second-order model, suggesting the role of a chemisorption process. The BBAC demonstrated a notable MB adsorption capacity of 195.8 mg/g, highlighting its effectiveness as an adsorbent. Multiple mechanisms were identified as controlling factors in MB adsorption by BBAC, including electrostatic forces, π-π stacking, and H-bonding interactions. The findings of this study indicate that BBAC derived from bamboo has the potential to be a promising adsorbent for the treatment of wastewater containing organic dyes. The employment of sustainable precursors like bamboo for activated carbon production contributes to environmentally friendly waste management practices and offers a solution for the remediation of dye-contaminated wastewater.
    Matched MeSH terms: Water Pollutants, Chemical*
  9. Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 01;252:126342.
    PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342
    Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
    Matched MeSH terms: Water Pollutants, Chemical*
  10. Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD
    Int J Biol Macromol, 2023 Sep 01;248:125943.
    PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943
    Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
    Matched MeSH terms: Water Pollutants, Chemical*
  11. Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Jagun ZT
    Environ Sci Pollut Res Int, 2023 Aug;30(36):86498-86519.
    PMID: 37454007 DOI: 10.1007/s11356-023-28580-z
    Untreated landfill leachate can harm the environment and human health due to its organic debris, heavy metals, and nitrogen molecules like ammonia. Microbial fuel cells (MFCs) have emerged as a promising technology for treating landfill leachate and generating energy. However, high concentrations of total ammonia-nitrogen (TAN), which includes both ammonia and the ammonium ion, can impede MFC performance. Therefore, maintaining an adequate TAN concentration is crucial, as both excess and insufficient levels can reduce power generation. To evaluate the worldwide research on MFCs using landfill leachate as a substrate, bibliometric analysis was conducted to assess publication output, author-country co-authorship, and author keyword co-occurrence. Scopus and Web of Science retrieved 98 journal articles on this topic during 2011-2022; 18 were specifically evaluated and analysed for MFC ammonia inhibition. The results showed that research on MFC using landfill leachate as a substrate began in 2011, and the number of related papers has consistently increased every 2 years, totaling 4060 references. China, India, and the USA accounted for approximately 60% of all global publications, while the remaining 40% was contributed by 70 other countries/territories. Chongqing University emerged as one of the top contributors among this subject's ten most productive universities. Most studies found that maintaining TAN concentrations in the 400-800 mg L-1 in MFC operation produced good power density, pollution elimination, and microbial acclimatization. However, the database has few articles on MFC and landfill leachate; MFC ammonia inhibition remains the main factor impacting system performance. This bibliographic analysis provides excellent references and future research directions, highlighting the current limitations of MFC research in this area.
    Matched MeSH terms: Water Pollutants, Chemical*
  12. Alotaibi AM, Ismail AF, Aziman ES
    Sci Rep, 2023 Jun 08;13(1):9316.
    PMID: 37291241 DOI: 10.1038/s41598-023-36487-5
    This study investigated the efficacy of using phosphate-modified zeolite (PZ) as an adsorbent for removing thorium from aqueous solutions. The effects of various factors such as contact time, adsorbent mass, initial thorium concentration, and pH value of the solution on the removal efficiency were analyzed using the batch technique to obtain optimum adsorption condition. The results revealed that the optimal conditions for thorium adsorption were a contact time of 24 h, 0.03 g of PZ adsorbent, pH 3, and a temperature of 25 °C. Isotherm and kinetics parameters of the thorium adsorption on PZ were also determined, with equilibrium studies showing that the experimental data followed the Langmuir isotherm model. The maximum adsorption capacity (Qo) for thorium was found to be 17.3 mg/g with the Langmuir isotherm coefficient of 0.09 L/mg. Using phosphate anions to modify natural zeolite increased its adsorption capacity. Furthermore, adsorption kinetics studies demonstrated that the adsorption of thorium onto PZ adsorbent fitted well with the pseudo-second-order model. The applicability of the PZ adsorbent in removing thorium from real radioactive waste was also investigated, and nearly complete thorium removal was achieved (> 99%) from the leached solution obtained from cracking and leaching processes of rare earth industrial residue under optimized conditions. This study elucidates the potential of PZ adsorbent for efficient removal of thorium from rare earth residue via adsorption, leading to a reduction in waste volume for ultimate disposition.
    Matched MeSH terms: Water Pollutants, Chemical*
  13. Al-Asadi ST, Al-Qaim FF, Al-Saedi HFS, Deyab IF, Kamyab H, Chelliapan S
    Environ Monit Assess, 2023 May 16;195(6):676.
    PMID: 37188926 DOI: 10.1007/s10661-023-11334-2
    Fig leaf, an environmentally friendly byproduct of fruit plants, has been used for the first time to treat of methylene blue dye. The fig leaf-activated carbon (FLAC-3) was prepared successfully and used for the adsorption of methylene blue dye (MB). The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET). In the present study, initial concentrations, contact time, temperatures, pH solution, FLAC-3 dose, volume solution, and activation agent were investigated. However, the initial concentration of MB was investigated at different concentrations of 20, 40, 80, 120, and 200 mg/L. pH solution was examined at these values: pH3, pH7, pH8, and pH11. Moreover, adsorption temperatures of 20, 30, 40, and 50 °C were considered to investigate how the FLAC-3 works on MB dye removal. The adsorption capacity of FLAC-3 was determined to be 24.75 mg/g for 0.08 g and 41 mg/g for 0.02 g. The adsorption process has followed the Langmuir isotherm model (R2 = 0.9841), where the adsorption created a monolayer covering the surface of the adsorbent. Additionally, it was discovered that the maximum adsorption capacity (Qm) was 41.7 mg/g and the Langmuir affinity constant (KL) was 0.37 L/mg. The FLAC-3, as low-cost adsorbents for methylene blue dye, has shown good cationic dye adsorption performance.
    Matched MeSH terms: Water Pollutants, Chemical*
  14. Hamidon TS, Hussin MH
    Int J Biol Macromol, 2023 Apr 01;233:123535.
    PMID: 36740116 DOI: 10.1016/j.ijbiomac.2023.123535
    The present study intended to develop efficient hydrogel spheres in treating simulated wastewater contaminated with p-chlorophenol. Herein, copper-modified nanocellulose was grafted onto alginate to produce eco-friendly hydrogel spheres to utilize as a viable biosorbent. Fabricated spheres were characterized through scanning electron microscopy, thermogravimetry, surface area measurement, point of zero charge and zeta potential analyses. The adsorption of p-chlorophenol was optimized by altering various experimental conditions. Pseudo second order kinetics and Langmuir adsorption isotherm best described the adsorption of p-chlorophenol onto copper-modified cellulose nanocrystal-based spheres. The maximum adsorption capacity was 66.67 mg g-1 with a reusability up to five regeneration cycles. The thermodynamic study directed that p-chlorophenol adsorption was exothermic, spontaneous, and reversible within the analyzed temperature range. Weber-Morris model revealed that intraparticle diffusion was not the singular rate-controlling step in the adsorption process. Hence, copper-modified nanocellulose spheres could be employed as a sustainable and effective biosorbent for p-chlorophenol adsorption from wastewater.
    Matched MeSH terms: Water Pollutants, Chemical*
  15. Heshammuddin NA, Al-Gheethi A, Saphira Radin Mohamed RM, Bin Khamidun MH
    Environ Res, 2023 Apr 01;222:115316.
    PMID: 36669587 DOI: 10.1016/j.envres.2023.115316
    Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
    Matched MeSH terms: Water Pollutants, Chemical*
  16. Hadibarata T, Sathishkumar P
    Bioprocess Biosyst Eng, 2023 Mar;46(3):307.
    PMID: 36692632 DOI: 10.1007/s00449-023-02846-9
    Matched MeSH terms: Water Pollutants, Chemical*
  17. Li Z, Yang Y, Chen X, He Y, Bolan N, Rinklebe J, et al.
    Chemosphere, 2023 Feb;313:137637.
    PMID: 36572363 DOI: 10.1016/j.chemosphere.2022.137637
    Microplastics are among the major contaminations in terrestrial and marine environments worldwide. These persistent organic contaminants composed of tiny particles are of concern due to their potential hazards to ecosystem and human health. Microplastics accumulates in the ocean and in terrestrial ecosystems, exerting effects on living organisms including microbiomes, fish and plants. While the accumulation and fate of microplastics in marine ecosystems is thoroughly studied, the distribution and biological effects in terrestrial soil call for more research. Here, we review the sources of microplastics and its effects on soil physical and chemical properties, including water holding capacity, bulk density, pH value as well as the potential effects to microorganisms and animals. In addition, we discuss the effects of microplastics in combination with other toxic environmental contaminants including heavy metals and antibiotics on plant growth and physiology, as well as human health and possible degradation and remediation methods. This reflect is an urgent need for monitoring projects that assess the toxicity of microplastics in soil and plants in various soil environments. The prospect of these future research activities should prioritize microplastics in agro-ecosystems, focusing on microbial degradation for remediation purposes of microplastics in the environment.
    Matched MeSH terms: Water Pollutants, Chemical*
  18. Manfra L, Mannozzi M, Onorati F
    Environ Sci Pollut Res Int, 2023 Feb;30(7):18380-18394.
    PMID: 36215011 DOI: 10.1007/s11356-022-23462-2
    Dispersants are approved for use in many countries (UK, South Korea, Australia, Egypt, France, Greece, Indonesia, Italy, Japan, Malaysia, Norway, Singapore, Spain, Thailand, and several coastal African, South American, and Middle Eastern countries). Here, the protocols of the most advanced (France, Norway, UK, Spain, Greece, Italy, USA, and Australia) are compared for identifying possible harmonization of approval procedures. Pre-toxicity testing, recognized oil datasets, common thresholds, standardized protocols, zoning, and monitoring are some of the aspects that can be discussed between countries.
    Matched MeSH terms: Water Pollutants, Chemical*
  19. Hossain S, Manan H, Shukri ZNA, Othman R, Kamaruzzan AS, Rahim AIA, et al.
    Microbiol Res, 2023 Jan;266:127239.
    PMID: 36327659 DOI: 10.1016/j.micres.2022.127239
    Microplastics pollution has become a threat to aquaculture practices, as nearly all farming systems are saturated with microplastics (MPs) particles. Current research on MPs is limited considering their effects on aquatic organisms and human health. However, limited research has been conducted on potential cures and treatments. In today's world, bioremediation of needful parameters in different culture systems is being successfully practiced by introducing floc-forming bacteria. Researchers had found that some bacteria are efficacious in degrading microplastics particles including polyethylene (PE), polystyrene (PS), and polypropylene (PP). In addition, some bacteria that can form floc, are being used in fish and shellfish culture systems to treat toxic pollutants as the heterotrophic bacteria use organic compounds to grow and are effective in degrading microplastics and minimizing toxic nitrogen loads in aquaculture systems. In this review, the ability of biofloc bacteria to degrade microplastics has been summarized by collating the results of previous studies. The concept of this review may represent the efficacy of biofloc technology as an implicit tool in the fish culture system restricting the MPs contamination in water resources to safeguard ecological as well as human health.
    Matched MeSH terms: Water Pollutants, Chemical*
  20. Nayeem A, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 1):114306.
    PMID: 36191616 DOI: 10.1016/j.envres.2022.114306
    Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
    Matched MeSH terms: Water Pollutants, Chemical*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links