Displaying publications 1 - 20 of 276 in total

Abstract:
Sort:
  1. Halmi Shamsudin, Norman Nordin, Sa’don Samian, Hafiz Salahudin, Azrul, A.B., Nik Azuan, N.I., et al.
    Jurnal Inovasi Malaysia, 2018;2(1):31-50.
    MyJurnal
    Angiography procedures is one of the diagnostic imaging procedures for studying blood vessels in the arteries and veins. This angiography examination is performed by injecting a viscous liquid called contrast media into the blood vessels to clearly identify the blocked blood vessels. This procedure involves the exposure of X-Ray in certain blood vessels and is performed by the Interventionist Radiologist. There are several types of angiography examinations which include cerebral angiography, coronary angiography, pulmonary angiography, peripheral angiography and renal angiography. The main problem that occurs during the Lower Limb Angiography examination involving elderly patients aged 60 years and above who suffer from critical diabetes stage in both blood vessels. The problem arise when there is no special immobilize device to support the foot and the patients were in an uncomfortable state for a period of 2-3 hours during the examination. Hence specialists had difficulty to interpret accurately the blood vessel clot in the foot due to less optimum radiograph. IMMOLIMBTM is an innovative invention created from used waste to overcome the foot movements, providing comfort and enhancing optimum diagnostic images.
    Matched MeSH terms: X-Rays
  2. Kamaruddin SA, Chan KY, Sahdan MZ, Rusop M, Saim H
    J Nanosci Nanotechnol, 2010 Sep;10(9):5618-22.
    PMID: 21133082
    Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.
    Matched MeSH terms: X-Rays
  3. Mousavi Z, Soofivand F, Esmaeili-Zare M, Salavati-Niasari M, Bagheri S
    Sci Rep, 2016 Feb 01;6:20071.
    PMID: 26832329 DOI: 10.1038/srep20071
    In this work, zinc chromite (ZnCr2O4) nanostructures have been synthesized through co-precipitation method. The effect of various parameters such as alkaline agent, pH value, and capping agent type was investigated on purity, particle size and morphology of samples. It was found that particle size and morphology of the products could be greatly influenced via these parameters. The synthesized products were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectra, X-ray energy dispersive spectroscopy (EDS), photoluminescence (PL) spectroscopy, diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometry (VSM). The superhydrophilicity of the calcined oxides was investigated by wetting experiments and a sessile drop technique which carried out at room temperature in air to determine the surface and interfacial interactions. Furthermore, the photocatalytic activity of ZnCr2O4 nanoparticles was confirmed by degradation of anionic dyes such as Eosin-Y and phenol red under UV light irradiation. The obtained ZnCr2O4 nanoparticles exhibit a paramagnetic behavior although bulk ZnCr2O4 is antiferromagnetic, this change in magnetic property can be ascribed to finite size effects.
    Matched MeSH terms: X-Rays
  4. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar
    MyJurnal
    Being an imperative material for man either used as building materials, pottery or as components in material industry and technology, knowledge of clays elemental contents is important. In the present study ten clay samples obtained from various locations in North-West Peninsular Malaysia were used. Majority of the clays were economically manufactured to be used as building materials or pottery. The objective of study was to determine the main elemental contents of the samples, and relate the results to the types of minerals, as well as to compare them with clays from other studies. In the study X-ray Fluorescence (XRF) coupled to samples dilution method and standard calibration samples was used. The elements detected in the study were Si, Al, Fe, Ti, K and Ca. Depending on locations, the percentage concentration ranged between 24.8 – 32.4 for Si, 10.8 – 19.0 for Al, 0.09 – 2.12 for Fe, 0.08 – 1.13 for Ti, 0.45 – 3.39 for K and trace amount of Ca and P. However, Mg that normally found in typical clay was not found in the studied samples. Comparing the oxide of the major elements with other studies, it was found that the clay samples contained mixtures of kaolinite (two-layered structure) and illite (three-layered structure).
    Matched MeSH terms: X-Rays
  5. Salehi Z, Ya Ali NK, Yusoff AL
    Appl Radiat Isot, 2012 Nov;70(11):2586-9.
    PMID: 22940409 DOI: 10.1016/j.apradiso.2011.12.007
    BEAMnrc was used to derive the X-ray spectra, from which HVL and homogeneity coefficient were determined, for different kVp and filtration settings. Except for the peak at 61 keV, the spectra are in good agreement with the IPEM report 78 data for the case of filtered beams, whereas the unfiltered beams exhibit softer spectra. Although the current attenuation data deviates from the IPEM 78 data by ~±0.5%, this has negligible effects on the calculated HVL values.
    Matched MeSH terms: X-Rays/adverse effects*
  6. Mohammad MK, Mohamed MI, Zakaria AM, Abdul Razak HR, Saad WM
    Biomed Res Int, 2014;2014:512834.
    PMID: 24877107 DOI: 10.1155/2014/512834
    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.
    Matched MeSH terms: X-Rays
  7. Samat S, Too S, Kadni T, Dollah M
    The values of beam quality correction factor kQ that were experimentally determined from year 2002 to 2008 were analysed. As kQ is the function of ionization chamber and beam quality, the analysis were based on three cases namely (a) kQ(NE2571, 6 MV x-rays) that were determined from 17 measurements in the duration of 69 months at 6 radiotherapy centres, (b) kQ(NE2571, 10 MV x-rays) from 7 measurements in the duration of 12 months at one radiotherapy centre, and (c) kQ(NE2581, 6 MV x-rays) from 5 measurements in the duration of 5 months also at one radiotherapy centre. The purpose is to examine, in each case, the variation kQ for all the measurements. In other words, to see variation kQ with time. Results obtained are 0.993(NE2571, 6 MV), 0.986(NE2571, 10 MV) and 0.986(NE2581, 6 MV). This shows that in each case, despite the difference in the experimental data in getting kQ for all measurement, kQ remains constant with time. Reasons for this are explained.
    Matched MeSH terms: X-Rays
  8. Ying, C.K., W.A. Kamil, Matsufuji, Naruhiro
    MyJurnal
    Charged particle therapy with carbon ions has advantages over conventional radiotherapy using x-ray beams. The application of charged particle therapy has rapidly increased over the last decades. This is due to its characteristic Bragg peak which has relatively low entrance doses and favourable doses distribution. In this research work, Geant4 based Monte Carlo simulation (MC) method has been used to calculate the radiation transportation and dose distributions in tissue-like media. The main objective of the work was to compare the Geant4 simulated depth dose distributions with experimental measurements and verify the capability of the geant4 simulation toolkit. The carbon ion beams for the therapeutic energy of 350 MeV/u and 400 MeV/u respectively were simulated, with the same settings as the experimental work carried out at the treatment room at Heavy Ion Medical Accelerator (HIMAC), National Institute of Radiological Sciences (NIRS), Chiba, Japan. The simulation results were verified with measurements data. The work was to measure the accuracy and quality of the dose distributions by Geant4 MC methods. The results show that the Bragg peak and spread out Bragg peak (SOBP) distributions in simulation has fairly good agreement with measurements.
    Matched MeSH terms: X-Rays
  9. Zambri NDS, Taib NI, Abdul Latif F, Mohamed Z
    Molecules, 2019 Oct 22;24(20).
    PMID: 31652583 DOI: 10.3390/molecules24203803
    The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400-600 cm-1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9-12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.
    Matched MeSH terms: X-Rays
  10. Yoga, R., Sivapathasundaram, N., Suresh, C.
    Malays Orthop J, 2009;3(1):72-77.
    MyJurnal
    We evaluated the efficacy of a cement gun to improve the depth of cement penetration in total knee arthroplasty. Ninety-one consecutive patients from two hospitals were recruited for this study. For Group I cement was applied to the tibial baseplate and the proximal tibia with fingers. Group 2 had similar application of cement to the tibial baseplate but cement was pressurized into the proximal tibia using a cement gun.. The knee was kept extended until the cement hardened. Standard post-operative x-rays were reviewed to assess cement penetration into the proximal tibia. The mean cement penetration was 2.1 mm in Group 1 and 3.1 mm in Group 2 and the difference was statistically significant. The use of the cement gun improves cement penetration into the proximal tibia and facilitates early stability of the implant fixation to the bone.
    Matched MeSH terms: X-Rays
  11. Salih, A.M., Wan Md. Zin Wan Yunus, Khairul Zaman Mohd Dahlan, Mohd Hilmi Mahmood, Mansor Ahmad
    MyJurnal
    Synthesis of palm oil based-urethane acrylate (POBUA) resins was carried out by acrylation of epoxidizedpalm oil (EPOP) using acrylic acid in the presence of a catalyst and followed by isocyanation to obtainthe POBUA. Using the monomer as a diluent in the formulation, 4% of photoinitiator and incorporationof organoclay (1-5% wt), nanocomposites were obtained upon UV irradiation. The X-ray DiffractoryXRD study revealed that the nanocomposites obtained were of the exfoliation type. The presence ofthe clay improved the hardness and did not affect the thermal stability. Similarly, it increased the glasstransition temperature Tg but reduced the modulus as the clay content was increased. The improvementof the tensile strength was only obtained when the clay concentration was 5 phr.
    Matched MeSH terms: X-Rays
  12. Nur Sha'dah Z, Iskandar S, Azhar A, Suhaimi M, Nur Lina R, Halimah M
    Sains Malaysiana, 2014;43:953-958.
    The effects of the X-ray irradiation and chemical etching on the physical and optical properties of cR-39 plastic detectors were investigated for different doses of X-ray. cR-39 detectors were etched in the solution of the 3 M of NaOH after irradiation for revelations of the track. The tracks formed on cR-39 either by irradiated X-ray or due to the effect of environment. The changes in the thickness after exposed have significant decrease in 60 kVp and started to increase in the range of 70 kVp up to 100 kVp due to the formation of oxidation layer on surface by free radicals. The optical band gaps before etching and after etching were determined by using Ultraviolet-visible (uv-Vis) spectroscopy. The optical band gap is attributed to the indirect transition due to its amorphous nature which is significantly decline trend energy in increase of the energy fluence of radiation. The Urbach's energy, is defined as the width of the tail localized states in the forbidden band gap which change increment trend as increase in dose delivered due to the distortion structure of the cR-39 in terms of the electron charges in valences electron hence attributes to the induced modification of angle bond between the neighboring atoms.
    Matched MeSH terms: X-Rays
  13. Zin, H. M.
    MyJurnal
    The Malaysian Association of Medical Physics (MAMP) was set up in the year 2000 to promote and further develop the field that was relatively new in Malaysia. The article briefly summarises key developments in medical physics since the first discovery of x-rays in 1895. The resulted rapid progress in the field was also highlighted and related to the pace of development in Malaysia. Key activities organised by MAMP were also addressed. The international practices related to the field and the profession were highlighted and compared to the current status in Malaysia. Although the field has progressed well in the country, there are several gaps identified to further improve the field and the profession in Malaysia.
    Matched MeSH terms: X-Rays
  14. Jamal AbuAlRoos N, Azman MN, Baharul Amin NA, Zainon R
    Phys Med, 2020 Oct;78:48-57.
    PMID: 32942196 DOI: 10.1016/j.ejmp.2020.08.017
    PURPOSE: The main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.

    MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.

    RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.

    CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.

    Matched MeSH terms: X-Rays
  15. Pan KL, Zulkarnaen M
    Med J Malaysia, 2014 Aug;69(4):197-8.
    PMID: 25500853 MyJurnal
    There is a resurgence of tuberculosis globally but lesions affecting the skull are rare. Cases reported are of single, focal lesions as seen on plain x-rays. We report a 34 yearold patient with tuberculosis of the skull where multiple punched out lesions are seen, mimicking that of multiple myeloma.
    Matched MeSH terms: X-Rays
  16. Muhammad Rawi Mohamed Zin, Mahendrasingam, Arumugam, Konkel, Chris, Narayanan, Theyencheri
    MyJurnal
    Changes in molecular structure configuration during strain induced crystallisation of an amorphous Poly(Lactic Acid) (PLA 4032D) polymer was monitored in-situ by simultaneously recording the wide angle x-ray scattering (WAXS) and small angle x-ray scattering (SAXS) patterns together with polymer deformation images and force data. The amorphous chain orientation from the beginning of deformation until the onset of crystallisation was studied from the WAXS patterns. The true mechanical behaviour described by the true stress-true strain curve related to an amorphous chain orientation exhibited a linear behaviour. Approaching critical amorphous orientation, the true stress-true strain curve deviated from linear into non-linear behaviour. After the onset of crystallization, when the deformed polymer became a semicrystalline state, the true mechanical behaviour exhibited true strain hardening which greatly affected by the formation of the morphology. The gradual true strain hardening was associated with the formation of micro-fibrillar structure containing thin crystallite morphology whilst sharp increased in true strain hardening was associated with the formation of stacked lamellar morphology in the form of macro-lattice structure. The study was accomplished by the application of high brilliance synchrotron radiation at beamline ID2 of ESRF, Grenoble in France and the usage of the high contrast resolution of WAXS and SAXS charge-couple device (CCD) camera as well as 40 milliseconds temporal resolution of data acquisition system.
    Matched MeSH terms: X-Rays
  17. Lai JML, Yang SL, Avoi R
    J Glob Infect Dis, 2019 3 1;11(1):2-6.
    PMID: 30814828 DOI: 10.4103/jgid.jgid_50_18
    Introduction: Conventionally, a combination of four separate drugs (ethambutol, isoniazid, rifampicin, and pyrazinamide [EHRZ]) is the first-line pharmacotherapy for pulmonary tuberculosis (TB). In recent years, fixed-dose combination (FDC) formulation, where a single tablet contains the active ingredients of four aforementioned drugs, is gaining popularity due to its ease of administration.

    Objective: To compare the real-world effectiveness of EHRZ and FDC treatment groups on a cohort registry by investigating the sputum conversion rate and treatment outcomes of both groups.

    Methods: A total of 11,489 patients' data were extracted from the Sabah TB registry between January 2012 and June 2016, including EHRZ (n = 4188) and FDC (n = 7301) patients. Then, 1:1 propensity score matching was adopted to reduce the baseline bias. Caliper matching was conducted with maximum tolerance score set at 0.001. Confounders included in the propensity score matching were gender, nationality, diabetes, HIV status, smoking status, and chest X-ray status. Successful matching provided 4188 matched pairs (n = 8376) for final analysis.

    Results: In this matched cohort of 4188 pairs, the 2-month sputum conversion rate of FDC group was significantly higher than the EHRZ group (96.3% vs. 94.3%; P < 0.001) whereas 6-month sputum conversion of both groups showed no significant difference. Treatment outcomes such as noncompliance rate, failure rate, and success rate have no significant difference (P > 0.05) in both the treatment groups. There was an incidental finding of reduced death rate among FDC group compared to the EHRZ group (0.2% vs. 0.5%; P = 0.034).

    Conclusion: The FDC formulation has better sputum conversion rate at 2 months compared to conventional EHRZ regime as separate-drug formulation. It was also observed that FDC has a slight protective effect against all-cause death among TB patients. This protective effect of FDC, however, still needs to be proven further.

    Matched MeSH terms: X-Rays
  18. Zainul Ibrahim Bin Zainuddin
    MyJurnal
    The effects of radiation on man and his health had been noticed since the early years after the discovery of X-rays. These biological concerns were more commonly known as “radio-sensitiveness” in the early publications. Later, the term radiation protection was introduced to express the need for protective measures to be promoted, formulated, implemented, evaluated and sustained to reduce the biological effects associated with radiation exposure. The principles of radiation protection were then supported with the concepts of justification, ALARA and “Benefits against the risks”. But these could not ensure that the application of radiation protection has been optimized. Amidst the technological advancements associated with radiation based imaging modalities in healthcare for more than 120 years, those advancements have yet to be able reduce the impact of these modalities being a source of risks upon the more beneficial role as a
    diagnostic tool. This paper reports a review on radiation protection from articles indexed in an online database. Considering that the titles of the articles contain the core subject matter that a publication carries, data were retrieved on those titles with the term “radiation protection”. Publications from 2008 to middle of November 2017 and aligned to Medicine and Health professions were included for further elaborations. The data were classified into four subject areas; education and training, administration and organization, practice and research. Discussions within each classification and their individual sub-classifications, supported by selected publications to the classification, highlight the importance of the particular subject area to the overall concept of radiation protection. Lessons learnt from the classifications could provide the necessary guidance on how one should adopt and adapt the concept of radiation protection holistically. The discussions that are presented are seen within the professional obligation in adhering to the principles of
    radiation protection.
    Matched MeSH terms: X-Rays
  19. Almugren KS, Sani SFA, Wandira R, Wahib N, Rozaila ZS, Khandaker MU, et al.
    Appl Radiat Isot, 2019 Sep;151:102-110.
    PMID: 31163392 DOI: 10.1016/j.apradiso.2019.04.027
    Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
    Matched MeSH terms: X-Rays*
  20. Al-Hada NM, Kamari HM, Baqer AA, Shaari AH, Saion E
    Nanomaterials (Basel), 2018 Apr 17;8(4).
    PMID: 29673195 DOI: 10.3390/nano8040250
    SnO₂ nanoparticle production using thermal treatment with tin(II) chloride dihydrate and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. Samples were analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse UV-vis reflectance spectra, photoluminescence (PL) spectra and the electron spin resonance (ESR). XRD analysis found tetragonal crystalline structures in the SnO₂ nanoparticles generated through calcination. EDX and FT-IR spectroscopy phase analysis verified the derivation of the Sn and O in the SnO₂ nanoparticle samples from the precursor materials. An average nanoparticle size of 4–15.5 nm was achieved by increasing calcination temperature from 500 °C to 800 °C, as confirmed through TEM. The valence state and surface composition of the resulting nanoparticle were analyzed using XPS. Diffuse UV-vis reflectance spectra were used to evaluate the optical energy gap using the Kubelka-Munk equation. Greater calcination temperature resulted in the energy band gap falling from 3.90 eV to 3.64 eV. PL spectra indicated a positive relationship between particle size and photoluminescence. Magnetic features were investigated through ESR, which revealed the presence of unpaired electrons. The magnetic field resonance decreases along with an increase of the g-factor value as the calcination temperature increased from 500 °C to 800 °C. Finally, Escherichia coli ATCC 25922 Gram (–ve) and Bacillus subtilis UPMC 1175 Gram (+ve) were used for in vitro evaluation of the tin oxide nanoparticle’s antibacterial activity. This work indicated that the zone of inhibition of 22 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: X-Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links