Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
    Matched MeSH terms: Xanthones/chemistry
  2. Vanessa VV, Mah SH
    Mini Rev Med Chem, 2021;21(17):2507-2529.
    PMID: 33583373 DOI: 10.2174/1389557521666210212152514
    Alzheimer's disease is a neurodegenerative disorder that results in progressive and irreversible central nervous system impairment, which has become one of the severe issues recently. The most successful approach of Alzheimer's treatment is the administration of cholinesterase inhibitors to prevent the hydrolysis of acetylcholine and subsequently improve cholinergic postsynaptic transmission. This review highlights a class of heterocycles, namely xanthone, and its remarkable acetylcholinesterase inhibitory activities. Naturally occurring xanthones, including oxygenated, prenylated, pyrano, and glycosylated xanthones, exhibited promising inhibition effects towards acetylcholinesterase. Interestingly, synthetic xanthone derivatives with complex substituents such as alkyl, pyrrolidine, piperidine, and morpholine have shown greater acetylcholinesterase inhibition activities. The structure-activity relationship of xanthones revealed that the type and position of the substituent(s) attached to the xanthone moiety influenced acetylcholinesterase inhibition activities where hydrophobic moiety will lead to an improved activity by contributing to the π-π interactions, as well as the hydroxy substituent(s) by forming hydrogen-bond interactions. Thus, further studies, including quantitative structure-activity relationship, in vivo and clinical validation studies are crucial for the development of xanthones into novel anti-Alzheimer's disease drugs.
    Matched MeSH terms: Xanthones/chemistry
  3. Khaw KY, Chong CW, Murugaiyah V
    J Enzyme Inhib Med Chem, 2020 Dec;35(1):1433-1441.
    PMID: 32608273 DOI: 10.1080/14756366.2020.1786819
    Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.
    Matched MeSH terms: Xanthones/chemistry
  4. Khaw KY, Kumar P, Yusof SR, Ramanathan S, Murugaiyah V
    Arch Pharm (Weinheim), 2020 Nov;353(11):e2000156.
    PMID: 32716578 DOI: 10.1002/ardp.202000156
    α-Mangostin has been reported to possess a broad range of pharmacological effects including potent cholinesterase inhibition, but the development of α-mangostin as a potential lead compound is impeded by its toxicity. The present study investigated the impact of simple structural modification of α-mangostin on its cholinesterase inhibitory activities and toxicity toward neuroblastoma and liver cancer cells. The dialkylated derivatives retained good acetylcholinesterase (AChE) inhibitory activities with IC50 values between 4.15 and 6.73 µM, but not butyrylcholinesterase (BChE) inhibitory activities, compared with α-mangostin, a dual inhibitor (IC50 : AChE, 2.48 µM; BChE, 5.87 µM). Dialkylation of α-mangostin produced AChE selective inhibitors that formed hydrophobic interactions at the active site of AChE. Interestingly, all four dialkylated derivatives of α-mangostin showed much lower cytotoxicity, being 6.4- to 9.0-fold and 3.8- to 5.5-fold less toxic than their parent compound on neuroblastoma and liver cancer cells, respectively. Likewise, their selectivity index was higher by 1.9- to 4.4-fold; in particular, A2 and A4 showed improved selectivity index compared with α-mangostin. Taken together, modification of the hydroxyl groups of α-mangostin at positions C-3 and C-6 greatly influenced its BChE inhibitory and cytotoxic but not its AChE inhibitory activities. These dialkylated derivatives are viable candidates for further structural modification and refinement, worthy in the search of new AChE inhibitors with higher safety margins.
    Matched MeSH terms: Xanthones/chemistry
  5. Zamakshshari NH, Ee GCL, Ismail IS, Ibrahim Z, Mah SH
    Food Chem Toxicol, 2019 Nov;133:110800.
    PMID: 31479710 DOI: 10.1016/j.fct.2019.110800
    The stem bark of Calophyllum depressinervosum and Calophyllum buxifolium were extracted and examined for their antioxidant activities, together with cytotoxicity towards human cancer cells. The methanol extract of C. depressinervosum exhibited good DPPH and NO scavenging effects. The strongest BCB inhibition and FIC effects were shown by dichloromethane and ethyl acetate extracts of both species. Overall, DPPH, FRAP and FIC assays showed strong correlation with TPC. For cytotoxicity, hexane extract of C. depressinervosum possessed the strongest anti-proliferative activities towards SNU-1 cells while the hexane extract of C. buxifolium showed the strongest activity towards LS-174T and K562 cells with the IC50 values ranging from 7 to 17 μg/mL. The purification of plant extracts afforded eight xanthones, ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4) xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and dombakinaxanthone (8). All the xanthones, except 1 were reported for the first time from both Calophyllum species. The xanthones were examined for their cytotoxic effect against K562 leukemic cells. Compounds 1 and 2 showed strong cytotoxicity with the IC50 values of 2.96 and 1.23 μg/mL, respectively. The molecular binding interaction of 2 was further investigated by performing molecular docking study with promising protein receptor Src kinase.
    Matched MeSH terms: Xanthones/chemistry
  6. Ng HS, Tan GYT, Lee KH, Zimmermann W, Yim HS, Lan JC
    J Biosci Bioeng, 2018 Oct;126(4):507-513.
    PMID: 29764763 DOI: 10.1016/j.jbiosc.2018.04.008
    The α- and γ-mangostins from Garcinia mangostana pericarps (GMP) exhibit antioxidant, anti-bacterial, anti-inflammatory and anti-tumor properties. The extraction yields α- and γ-mangostins are often limited by the presence of the GMP cell walls. Therefore, the extraction and recovery of mangostins from GMP with an Aspergillus niger cellulase-assisted aqueous micellar biphasic system (CA-AMBS) was developed for enhanced yield of mangostins. Effects of the concentration of cellulase, the incubation time and the temperature of the system on the recovery of mangostins were investigated. The optimum condition for the recovery of α- and γ-mangostins was obtained with the addition of 0.5% (w/w) cellulase incubated at 40°C for 2 h. High log partition coefficients of α-mangostins (log Kα 4.79 ± 0.02) and γ-mangostins (log Kγ 4.02 ± 0.02) were achieved. High yields of α-mangostins (73.4%) and γ-mangostins (14.0%) were obtained from the micelle-rich bottom phase with final concentrations of 3.67 mg/mL and 0.70 mg/mL, respectively. The back-extraction of mangostins was performed with the addition of 30% (w/w) of isopropanol and 0.05 M of KCl at pH 9 to the bottom phase of the CA-AMBS. The yields of the α- and γ-mangostins from GMP were considerably enhanced with the CA-AMBS and the direct recovery of mangostins was demonstrated without additional downstream processing steps.
    Matched MeSH terms: Xanthones/chemistry*
  7. Kar Wei L, Zamakshshari NH, Ee GCL, Mah SH, Mohd Nor SM
    Nat Prod Res, 2018 Sep;32(18):2147-2151.
    PMID: 28826239 DOI: 10.1080/14786419.2017.1367781
    Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.
    Matched MeSH terms: Xanthones/chemistry*
  8. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Xanthones/chemistry*
  9. Karunakaran T, Ee GCL, Ismail IS, Mohd Nor SM, Zamakshshari NH
    Nat Prod Res, 2018 Jun;32(12):1390-1394.
    PMID: 28715912 DOI: 10.1080/14786419.2017.1350666
    Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and MS. The cytotoxicities and anti-inflammatory activities of these five compounds against RAW cell 264.7 were tested. The structural-activity relationship studies indicated that β-mangostin showed a significant activity against the LPS-induced RAW cell 264.7, while the acetyl- as well as the O-alkyl- β-mangostin derivatives did not give good activity. Naturally occurring β-mangostin demonstrated comparatively better anti-inflammatory activity than its synthetic counterparts.
    Matched MeSH terms: Xanthones/chemistry*
  10. Wong KW, Ee GCL, Ismail IS, Karunakaran T, Jong VYM
    Nat Prod Res, 2017 Nov;31(21):2513-2519.
    PMID: 28412841 DOI: 10.1080/14786419.2017.1315717
    Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
    Matched MeSH terms: Xanthones/chemistry
  11. Tan WN, Khairuddean M, Wong KC, Tong WY, Ibrahim D
    J Asian Nat Prod Res, 2016 Aug;18(8):804-11.
    PMID: 26999039 DOI: 10.1080/10286020.2016.1160071
    A new xanthone, namely garcinexanthone G (1), along with eight known compounds, stigmasta-5,22-dien-3β-ol (2), stigmasta-5,22-dien-3-O-β-glucopyranoside (3), 3β-acetoxy-11α,12α-epoxyoleanan-28,13β-olide (4), 2,6-dimethoxy-p-benzoquinone (5), 1,3,5-trihydroxy-2-methoxyxanthone (6), 1,3,7-trihydroxyxanthone (7), kaempferol (8) and quercetin (9), were isolated from the stem bark of Garcinia atroviridis. Their structures were elucidated based on spectroscopic methods including nuclear magnetic resonance (NMR-1D and 2D), UV, IR, and mass spectrometry. All the isolated compounds were evaluated for their antioxidant properties based on the DPPH radical scavenging activities. Results showed that 1,3,7-trihydroxyxanthone and quercetin showed significant antioxidant activities with EC50 values of 16.20 and 12.68 μg/ml, respectively, as compared to the control, ascorbic acid (7.4 μg/ml).
    Matched MeSH terms: Xanthones/chemistry
  12. Mah SH, Ee GC, Teh SS, Sukari MA
    Nat Prod Res, 2015;29(1):98-101.
    PMID: 25229947 DOI: 10.1080/14786419.2014.959949
    Extensive chromatographic isolation and purification of the extracts of the stem bark of Calophyllum inophyllum and Calophyllum soulattri have resulted in 11 xanthones. C. inophyllum gave inophinnin (1), inophinone (2), pyranojacareubin (5), rheediaxanthone A (6), macluraxanthone (7) and 4-hydroxyxanthone (8), while C. soulattri afforded soulattrin (3), phylattrin (4), caloxanthone C (9), brasixanthone B (10) and trapezifolixanthone (11). The structures of these compounds were determined on the basis of spectroscopic analyses such as 1D and 2D NMR, GC-MS, IR and UV. Cytotoxicity screening (MTT assay) carried out in vitro on all the xanthones using five human cancer cell lines indicated good activities for some of these xanthones. The structure-activity relationship study revealed that the inhibitory activities exhibited by these xanthone derivatives to be closely related to the existence and nature of the pyrano and the prenyl substituent groups on their skeleton.
    Matched MeSH terms: Xanthones/chemistry*
  13. Bin Ismail AA, Ee GC, Bin Daud S, Teh SS, Hashim NM, Awang K
    J Asian Nat Prod Res, 2015;17(11):1104-8.
    PMID: 26023810 DOI: 10.1080/10286020.2015.1047353
    A new pyranoxanthone, venuloxanthone (1), was isolated from the stem bark of Calophyllum venulosum, together with three other xanthones, tovopyrifolin C (2), ananixanthone (3) and caloxanthone I (4), along with two common triterpenes, friedelin (5) and lupeol (6). The structures of these compounds were identified using several spectroscopic analyses which are NMR, GCMS and FTIR experiments.
    Matched MeSH terms: Xanthones/chemistry
  14. See I, Ee GC, Teh SS, Kadir AA, Daud S
    Molecules, 2014 Jun 04;19(6):7308-16.
    PMID: 24901833 DOI: 10.3390/molecules19067308
    A detailed chemical study on the ethyl acetate and methanol extracts of the stem bark of Garcinia mangostana resulted in the successful isolation of one new prenylated xanthone, mangaxanthone B (1), one new benzophenone, mangaphenone (2), and two known xanthones, mangostanin (3) and mangostenol (4). The structures of these compounds were elucidated through analysis of their spectroscopic data obtained using 1D and 2D NMR and MS techniques.
    Matched MeSH terms: Xanthones/chemistry
  15. Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, et al.
    J Ethnopharmacol, 2014 Apr 28;153(2):435-45.
    PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051
    The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
    Matched MeSH terms: Xanthones/chemistry
  16. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: Xanthones/chemistry
  17. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Xanthones/chemistry
  18. Daud SB, Ee GC, Malek EA, Teh SS, See I
    Nat Prod Res, 2014;28(19):1534-8.
    PMID: 24897077 DOI: 10.1080/14786419.2014.924001
    A new coumarin, hoseimarin (1), together with four other xanthones, trapezifolizanthone (2), osajaxanthone (3), β-mangostin (4) and caloxanthone A (5), were isolated from the stem bark of Calophyllum hosei. The structures of these compounds were established by using spectroscopic analysis which included (1)H NMR, (13)C NMR, COSY, DEPT, HMQC and HMBC experiments.
    Matched MeSH terms: Xanthones/chemistry
  19. Ee GC, See I, Teh SS, Daud S
    J Asian Nat Prod Res, 2014;16(7):790-4.
    PMID: 24670077 DOI: 10.1080/10286020.2014.901313
    Our phytochemical study on the stem bark of Garcinia mangostana has led to the discovery of a new furanoxanthone, mangaxanthone A (1), together with five known analogs. The five known analogs that were isolated are α-mangostin (2), β-mangostin (3), cowagarcinone B (4), and dulcisxanthone F (5). The structural elucidations of these compounds were carried out by interpreting their spectroscopic data, mainly 1D and 2D NMR spectra and MS.
    Matched MeSH terms: Xanthones/chemistry
  20. Teh SS, Ee GC, Mah SH, Lim YM, Ahmad Z
    Molecules, 2013 Feb 04;18(2):1985-94.
    PMID: 23381024 DOI: 10.3390/molecules18021985
    The cytotoxic structure-activity relationships among a series of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora were studied. Eleven xanthone derivatives identified as mesuarianone (1), mesuasinone (2), mesuaferrin A (3), mesuaferrin B (4), mesuaferrin C (5), 6-deoxyjacareubin (6), caloxanthone C (7), macluraxanthone (8), 1,5-dihydroxyxanthone (9), tovopyrifolin C (10) and α-mangostin (11) were isolated from the three Mesua species. The human cancer cell lines tested were Raji, SNU-1, K562, LS-174T, SK-MEL-28, IMR-32, HeLa, Hep G2 and NCI-H23. Mesuaferrin A (3), macluraxanthone (8) and α-mangostin (11) showed strong cytotoxicities as they possess significant inhibitory effects against all the cell lines. The structure-activity relationship (SAR) study revealed that the diprenyl, dipyrano and prenylated pyrano substituent groups of the xanthone derivatives contributed towards the cytotoxicities.
    Matched MeSH terms: Xanthones/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links