Displaying publications 2461 - 2480 of 6773 in total

Abstract:
Sort:
  1. Safi SZ, Saeed L, Shah H, Latif Z, Ali A, Imran M, et al.
    Mol Biol Rep, 2022 Oct;49(10):9473-9480.
    PMID: 35925485 DOI: 10.1007/s11033-022-07816-0
    BACKGROUND: The current study aimed to investigate the stimulatory effect of beta-adrenergic receptors (β-ARs) on brain derived neurotropic factor (BDNF) and cAMP response element binding protein (CREB).

    METHODS: Human Müller cells were cultured in low and high glucose conditions. Cells were treated with xamoterol (selective agonist for β1-AR), salmeterol (selective agonist for β2-AR), isoproterenol (β-ARs agonist) and propranolol (β-ARs antagonist), at 20 µM concentration for 24 h. Western Blotting assay was performed for the gene expression analysis. DNA damage was evaluated by TUNEL assay. DCFH-DA assay was used to check the level of reactive oxygen species (ROS). Cytochrome C release was measured by ELISA.

    RESULTS: Xamoterol, salmeterol and isoproterenol showed no effect on Caspase-8 but it reduced the apoptosis and increased the expression of BDNF in Müller cells. A significant change in the expression of caspase-3 was observed in cells treated with xamoterol and salmeterol as compared to isoproterenol. Xamoterol, salmeterol and isoproterenol significantly decreased the reactive oxygen species (ROS) when treated for 24 hours. Glucose-induced cytochrome c release was disrupted in Müller cells.

    CONCLUSION: β-ARs, stimulated by agonist play a protective role in hyperglycemic Müller cells, with the suppression of glucose-induced caspase-3 and cytochrome c release. B-Ars may directly mediate the gene expression of BDNF.

  2. Shakoor A, Khan AL, Akhter P, Aslam M, Bilad MR, Maafa IM, et al.
    Environ Sci Pollut Res Int, 2021 Mar;28(10):12397-12405.
    PMID: 32651793 DOI: 10.1007/s11356-020-10044-3
    Mixed matrix membranes (MMMs) were fabricated by the hydrothermal synthesis of ordered mesoporous KIT-6 type silica and incorporating in polyimide (P84). KIT-6 and MMMs were characterized to evaluate morphology, thermal stability, surface area, pore volume, and other characteristics. SEM images of synthesized MMMs and permeation data of CO2 suggested homogenous dispersion of mesoporous fillers and their adherence to the polymer matrix. The addition of KIT-6 to polymer matrix improved the permeability of CO2 due to the increase in diffusivity through porous particles. The permeability was 3.2 times higher at 30% loading of filler. However, selectivity showed a slight decrease with the increase in filler loadings. The comparison of gas permeation results of KIT-6 with the well-known MCM-41 revealed that KIT-6 based MMMs showed 14% higher permeability than that of MMMs composed of mesoporous MCM-41. The practical commercial viability of synthesized membranes was examined under different operating temperatures and mixed gas feeds. Mesoporous KIT-6 silica is an attractive additive for gas permeability enhancement without compromising the selectivity of MMMs. Graphical abstract.
  3. Alam A, Azam M, Abdullah AB, Malik IA, Khan A, Hamzah TA, et al.
    Environ Sci Pollut Res Int, 2015 Jun;22(11):8392-404.
    PMID: 25537287 DOI: 10.1007/s11356-014-3982-5
    Environmental quality indicators are crucial for responsive and cost-effective policies. The objective of the study is to examine the relationship between environmental quality indicators and financial development in Malaysia. For this purpose, the number of environmental quality indicators has been used, i.e., air pollution measured by carbon dioxide emissions, population density per square kilometer of land area, agricultural production measured by cereal production and livestock production, and energy resources considered by energy use and fossil fuel energy consumption, which placed an impact on the financial development of the country. The study used four main financial indicators, i.e., broad money supply (M2), domestic credit provided by the financial sector (DCFS), domestic credit to the private sector (DCPC), and inflation (CPI), which each financial indicator separately estimated with the environmental quality indicators, over a period of 1975-2013. The study used the generalized method of moments (GMM) technique to minimize the simultaneity from the model. The results show that carbon dioxide emissions exert the positive correlation with the M2, DCFC, and DCPC, while there is a negative correlation with the CPI. However, these results have been evaporated from the GMM estimates, where carbon emissions have no significant relationship with any of the four financial indicators in Malaysia. The GMM results show that population density has a negative relationship with the all four financial indicators; however, in case of M2, this relationship is insignificant to explain their result. Cereal production has a positive relationship with the DCPC, while there is a negative relationship with the CPI. Livestock production exerts the positive relationship with the all four financial indicators; however, this relationship with the CPI has a more elastic relationship, while the remaining relationship is less elastic with the three financial indicators in a country. Energy resources comprise energy use and fossil fuel energy consumption, both have distinct results with the financial indicators, as energy demand have a positive and significant relationship with the DCFC, DCPC, and CPI, while fossil fuel energy consumption have a negative relationship with these three financial indicators. The results of the study are of value to both environmentalists and policy makers.
  4. Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16779-16796.
    PMID: 35084685 DOI: 10.1007/s11356-022-18515-5
    Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
  5. Khan MFS, Tahir L, Zhou X, Bary G, Sajid M, Shahzad AK, et al.
    Heliyon, 2023 Mar;9(3):e14209.
    PMID: 36923897 DOI: 10.1016/j.heliyon.2023.e14209
    The fixed-dose combination of Amlodipine Besylate (ADB) with Perindopril Tertbutylamine (PTBA) drug is used to treat patients with mild-to-moderate hypertension. In recent times researchers are interested to find the efficient analytical method development and validation for the simultaneous determination of ADB and PTBA in a fixed-dose, film-coated tablet. Therefore, the current study was performed with a reverse-phase liquid chromatography method developed to simultaneously analyze ADB and PTBA in film-coated tablets as fixed-dose combinations. The linearity of the proposed method was calculated by preparing six different mixtures of both ADB and PTBA in the mobile phase. The concentration of both the analytes was analyzed at 56mg/100 mL to 84mg/100 mL and 32mg/100 mL to 48mg/100 mL, respectively. The ratio of acetonitrile and phosphate buffer was 35:65. The flow rate was adjusted to 1.5 ml per minute to reduce the retention time. The validation study was performed for the parameters specificity, linearity, precision, range, limit of detection, limit of quantification, accuracy/biasness, and robustness. The relative percentage standard deviation for Perindopril Tertbutyl amine was 0.148%, and for Amlodipine is 0.312%. These results show that the advanced analysis method for simultaneous analysis of fixed-dose is precise. The theoretical IR spectra were also calculated by Gaussian 9.2 by employing the B3LYP functional at density functional theory (DFT) level study. All these parameters studied in this work authenticate the effectiveness of the developed validation method and ensure its repeatability/reproducibility accordingly. To the best of our knowledge, this is the first time to develop a new fast, and easy method for simultaneous identification and quantification of ADB and PTBA by high-performance liquid chromatography (HPLC) with a time-efficient and cost-effective approach.
  6. Younus HA, Saeed M, Mahmood A, Jadoon MSK, Hameed A, Asari A, et al.
    Bioorg Chem, 2023 May;134:106450.
    PMID: 36924652 DOI: 10.1016/j.bioorg.2023.106450
    Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
  7. Akbar N, Javed M, Arif Khan A, Masood A, Ahmed N, Mehmood RY, et al.
    ACS Omega, 2023 Aug 22;8(33):30095-30108.
    PMID: 37636959 DOI: 10.1021/acsomega.3c02457
    The degradation of organic dye pollutants is a critical environmental issue that has garnered significant attention in recent years. To address this problem, we investigated the potential of CaCrO4 chromite (CCO) as a photocatalyst for the degradation of cationic and anionic dye solutions under sunlight irradiation. CaCrO4 was synthesized via a sol-gel auto-combustion route and sintered at 900 °C. The Rietveld refined XRD profile confirmed the zircon-type structure of CaCrO4 crystallized in the tetragonal unit cell with I41/amd space group symmetry. The surface morphology of the sample was investigated by field emission scanning electron microscopy (FESEM), which revealed the polyhedral texture of the grains. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) studies were carried out to analyze the elemental composition and chemical states of the ions present in the compound. Fourier transform infrared (FT-IR) spectroscopy analysis revealed the vibrational modes corresponding to the tetrahedral and dodecahedral metal oxide bonds. The optical band gap was approximated to be in the range of 1.928 eV by using the Tauc relation. The CaCrO4 catalyst with different contents (5, 20, 35, and 50 mg) was investigated for its photocatalytic performance for the degradation of RhB dye solution under sunlight irradiation using a UV-Vis spectrometer over the experimental wavelength range of 450-600 nm. The degradation efficacy increased from 70.630 to 93.550% for 5-35 mg and then decreased to 68.720% for 50 mg in 140 min under visible light illumination. The comparative study demonstrates that a higher degradation rate was achieved for cationic than anionic dyes in the order RhB > MB > MO. The highest deterioration (93.80%) was achieved for the RhB dye in 140 min. Equilibrium and kinetic studies showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of 21.125 mg/g was observed for the catalyst concentration of 35 mg. From the cyclic test, it has been observed that the synthesized photocatalyst is structurally and morphologically stable and reusable. The radical trapping experiment demonstrated that superoxide and hydroxyl radicals were the primary species engaged in the photodegradation process. A possible mechanism for the degradation of RhB has been proposed. Hence, we conclude that CaCrO4 can be used as an efficient photocatalyst for the remediation of organic dye pollutants from the environment.
  8. Sayaf AM, Ahmad H, Aslam MA, Ghani SA, Bano S, Yousafi Q, et al.
    Appl Biochem Biotechnol, 2023 Nov;195(11):6959-6978.
    PMID: 36961512 DOI: 10.1007/s12010-023-04466-1
    Because of the essential role of PLpro in the regulation of replication and dysregulation of the host immune sensing, it is considered a therapeutic target for novel drug development. To reduce the risk of immune evasion and vaccine effectiveness, small molecular therapeutics are the best complementary approach. Hence, we used a structure-based drug-designing approach to identify potential small molecular inhibitors for PLpro of SARS-CoV-2. Initial scoring and re-scoring of the best hits revealed that three compounds NPC320891 (2,2-Dihydroxyindene-1,3-Dione), NPC474594 (Isonarciclasine), and NPC474595 (7-Deoxyisonarciclasine) exhibit higher docking scores than the control GRL0617. Investigation of the binding modes revealed that alongside the essential contacts, i.e., Asp164, Glu167, Tyr264, and Gln269, these molecules also target Lys157 and Tyr268 residues in the active site. Moreover, molecular simulation demonstrated that the reported top hits also possess stable dynamics and structural packing. Furthermore, the residues' flexibility revealed that all the complexes demonstrated higher flexibility in the regions 120-140, 160-180, and 205-215. The 120-140 and 160-180 lie in the finger region of PLpro, which may open/close during the simulation to cover the active site and push the ligand inside. In addition, the total binding free energy was reported to be - 32.65 ± 0.17 kcal/mol for the GRL0617-PLpro, for the NPC320891-PLpro complex, the TBE was - 35.58 ± 0.14 kcal/mol, for the NPC474594-PLpro, the TBE was - 43.72 ± 0.22 kcal/mol, while for NPC474595-PLpro complex, the TBE was calculated to be - 41.61 ± 0.20 kcal/mol, respectively. Clustering of the protein's motion and FEL further revealed that in NPC474594 and NPC474595 complexes, the drug was seen to have moved inside the binding cavity along with the loop in the palm region harboring the catalytic triad, thus justifying the higher binding of these two molecules particularly. In conclusion, the overall results reflect favorable binding of the identified hits strongly than the control drug, thus demanding in vitro and in vivo validation for clinical purposes.
  9. Butt MD, Ong SC, Butt FZ, Sajjad A, Rasool MF, Imran I, et al.
    Int J Environ Res Public Health, 2022 Nov 18;19(22).
    PMID: 36429988 DOI: 10.3390/ijerph192215266
    BACKGROUND: Kidney failure is a global health problem with a worldwide mean prevalence rate of 13.4%. Kidney failure remains symptomless during most of the early stages until symptoms appear in the advanced stages. Kidney failure is associated with a decrease in health-related quality of life (HRQOL), deterioration in physical and mental health, and an increased risk of cardiovascular morbidity and mortality. This study aimed to evaluate the factors associated with decreased HRQOL and other factors affecting the overall health of patients. Another objective was to measure how medication adherence and depression could affect the overall HRQOL in patients with kidney failure.

    METHODOLOGY: The study used a prospective follow-up mix methodology approach with six-month follow-ups of patients. The participants included in the study population were those with chronic kidney disease grade 4 and kidney failure. Pre-validated and translated questionnaires (Kidney Disease Quality of Life-Short Form, Hamilton Depression Rating Scale Urdu Version, and Morisky Lewis Greens Adherence Scale) and assessment tools were used to collect data.

    RESULTS: This study recruited 314 patients after an initial assessment based on inclusion criteria. The mean age of the study population was 54.64 ± 15.33 years. There was a 47.6% male and a 52.4% female population. Hypertension and diabetes mellitus remained the most predominant comorbid condition, affecting 64.2% and 74.6% of the population, respectively. The study suggested a significant (p < 0.05) deterioration in the mental health composite score with worsening laboratory variables, particularly hematological and iron studies. Demographic variables significantly impact medication adherence. HRQOL was found to be deteriorating with a significant impact on mental health compared to physical health.

    CONCLUSIONS: Patients on maintenance dialysis for kidney failure have a significant burden of physical and mental symptoms, depression, and low HRQOL. Given the substantial and well-known declines in physical and psychological well-being among kidney failure patients receiving hemodialysis, the findings of this research imply that these areas related to health should receive special attention in the growing and expanding population of kidney failure patients.

  10. Asghar MZ, Albogamy FR, Al-Rakhami MS, Asghar J, Rahmat MK, Alam MM, et al.
    Front Public Health, 2022;10:855254.
    PMID: 35321193 DOI: 10.3389/fpubh.2022.855254
    Deep neural networks have made tremendous strides in the categorization of facial photos in the last several years. Due to the complexity of features, the enormous size of the picture/frame, and the severe inhomogeneity of image data, efficient face image classification using deep convolutional neural networks remains a challenge. Therefore, as data volumes continue to grow, the effective categorization of face photos in a mobile context utilizing advanced deep learning techniques is becoming increasingly important. In the recent past, some Deep Learning (DL) approaches for learning to identify face images have been designed; many of them use convolutional neural networks (CNNs). To address the problem of face mask recognition in facial images, we propose to use a Depthwise Separable Convolution Neural Network based on MobileNet (DWS-based MobileNet). The proposed network utilizes depth-wise separable convolution layers instead of 2D convolution layers. With limited datasets, the DWS-based MobileNet performs exceptionally well. DWS-based MobileNet decreases the number of trainable parameters while enhancing learning performance by adopting a lightweight network. Our technique outperformed the existing state of the art when tested on benchmark datasets. When compared to Full Convolution MobileNet and baseline methods, the results of this study reveal that adopting Depthwise Separable Convolution-based MobileNet significantly improves performance (Acc. = 93.14, Pre. = 92, recall = 92, F-score = 92).
  11. Rehman ZU, Rehman MA, Rehman B, Sikiru S, Qureshi S, Ali EM, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(53):113889-113902.
    PMID: 37858013 DOI: 10.1007/s11356-023-30279-0
    Renewable energy systems are vital for a sustainable future, where solid-state hydrogen storage can play a crucial role. Perovskite hydride materials have attracted the scientific community for hydrogen storage applications. The current work focuses on the theoretical study using density functional theory (DFT) to evaluate the characteristics of MgXH3 (X = Co, Cu, Ni) hydrides. The structural, vibrational, electronic, mechanical, thermodynamic, and hydrogen storage properties of these hydrides were investigated. The equilibrium lattice parameters were calculated using the Birch-Murnaghan equation of state-to-energy volume curves. The elastic constants (Cij) and relevant parameters, such as Born criteria, were calculated to confirm the mechanical stability of the hydrides. The Cauchy pressure (Cp) revealed brittle or ductile behavior. The outcomes of the Pugh ratio, Poisson ratio, and anisotropy were also calculated and discussed. The absence of negative lattice vibrational frequencies in phonon dispersion confirmed the lattice's dynamic stability. The heat capacity curves of thermodynamic properties revealed that hydrides can conduct thermal energy. The metallic character and ample interatomic distances of hydrides were confirmed by the band structure and population analysis, which confirmed that hydrides can conduct electrical energy and adsorb hydrogen. The density of state (DOS) and partial DOS unveiled the role of specific atoms in the DOS of the crystal. The calculated gravimetric hydrogen storage capacity of MgCoH3, MgCuH3, and MgNiH3 hydrides was 3.64, 3.32, and 3.49wt%, respectively. Our results provide a deeper understanding of its potential for hydrogen storage applications through a detailed analysis of MgXH3 (X = Co, Cu, Ni) perovskite hydride material.
  12. Jameel MH, Sufi Bin Roslan M, Bin Mayzan MZH, Agam MAB, Zaki ZI, Fallatah AM
    R Soc Open Sci, 2023 Jul;10(7):230503.
    PMID: 37476508 DOI: 10.1098/rsos.230503
    In the present research, the structural, electronic and optical properties of transition metal dichalcogenide-doped transition metal oxides MoS2-doped-V2O5 with various doping concentrations (x = 1-3%) of MoS2 atoms are studied by using first principles calculation. The generalized gradient approximation Perdew-Burke-Ernzerhof simulation approach is used to investigate the energy bandgap (Eg) of orthorhombic structures. We examined the energy bandgap (Eg) decrement from 2.76 to 1.30 eV with various doping (x = 1-3%) of molybdenum disulfide (MoS2) atoms. The bandgap nature shows that the material is a well-known direct bandgap semiconductor. MoS2 doping (x = 1-3%) atoms in pentoxide (V2O5) creates the extra gamma active states which contribute to the formation of conduction and valance bands. MoS2-doped-V2O5 composite is a proficient photocatalyst, has a large surface area for absorption of light, decreases the electron-hole pairs recombination rate and increases the charge transport. A comprehensive study of optical conductivity reveals that strong peaks of MoS2-doped-V2O5 increase in ultraviolet spectrum region with small shifts at larger energy bands through increment doping x = 1-3% atoms of MoS2. A significant decrement was found in the reflectivity due to the decrement in the bandgap with doping. The optical properties significantly increased by the decrement of bandgap (Eg). Two-dimensional MoS2-doped-V2O5 composite has high energy absorption, optical conductivity and refractive index, and is an appropriate material for photocatalytic applications.
  13. Abbasi MA, Rubab K, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Raza H, et al.
    ACS Omega, 2023 Jun 27;8(25):22899-22911.
    PMID: 37396264 DOI: 10.1021/acsomega.3c01882
    The aim of this work was to bring forth some new hybrid molecules having pharmacologically potent indole and 1,3,4-oxadiazole heterocyclic moieties unified with a propanamide entity. The synthetic methodology was initiated by esterification of 2-(1H-indol-3-yl)acetic acid (1) in a catalytic amount of sulfuric acid and ethanol in excess, to form ethyl 2-(1H-indol-3-yl)acetate (2), which was converted to 2-(1H-indol-3-yl)acetohydrazide (3) and further transformed to 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). 3-Bromopropanoyl chloride (5) was reacted with various amines (6a-s) in aqueous alkaline medium to generate a series of electrophiles, 3-bromo-N-(substituted)propanamides (7a-s), and these were further reacted with nucleophile 4 in DMF and NaH base to yield the targeted N-(substituted)-3-{(5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl)sulfanyl}propanamides (8a-s). The chemical structures of these biheterocyclic propanamides were confirmed by IR, 1H NMR, 13C NMR, and EI-MS spectral techniques. These compounds were evaluated for their enzyme inhibitory potentials against the α-glucosidase enzyme, where the compound 8l showed promising enzyme inhibitory potential with an IC50 value less than that of the standard acarbose. Molecular docking results of these molecules were coherent with the results of their enzyme inhibitory potentials. Cytotoxicity was assessed by the percentage of hemolytic activity method, and these compounds generally exhibited very low values as compared to the reference standard, Triton-X. Hence, some of these biheterocyclic propanamides might be considered as salient therapeutic agents in further stages of antidiabetic drug development.
  14. Kim YJ, Aslam MS, Deng R, Leghari QA, Naseem S, Ul Hassan MM, et al.
    Heliyon, 2023 Jun;9(6):e16636.
    PMID: 37274650 DOI: 10.1016/j.heliyon.2023.e16636
    BACKGROUND: The mental health issues due to COVID-19, such as intolerance of uncertainty (IOU), anxiety, stress, and depression, have attracted extensive attention from researchers. The challenges for Pakistani university students could be worse than developed countries due to the lack of online courses/programs and online mental health support provided by academic institutions. Therefore, the current study aims to assess the intolerance of uncertainty, depression, anxiety, and stress of Pakistani university students after the second wave of COVID-19 and the relationship among these constructs.

    METHODS: A convenience cross-sectional sampling method was used to collect data from university students in Pakistan between January 2021 and April 2022 via a structured online questionnaire. The Descriptive analysis focused on frequencies, percentages, mean, and standard deviation (SD) were calculated on IOU-12 and DASS-21. Covariance for the research model and confirmatory factor analyses fit indices for the IOU-12 and DASS-21 were analyzed by AMOS statistical packages.

    RESULTS: As expected, anxiety, depression, and stress persist among Pakistani university students. On average, they report mild to moderate mental health problems regarding anxiety, depression, stress, and intolerance of uncertainty. Our results indicate a strong positive relationship among the three emotional distress components - anxiety, depression, and stress. However, our results suggest no significant relationship between IOU and the three subcomponents of emotional distress (anxiety, depression, and stress).

    LIMITATIONS: First, the cross-sectional survey design means we cannot conclude on the causal relations. Second, the self-report questionnaire embeds subjectivity issues. Last, the generalizability of the sample to the whole student population in Pakistan is limited, considering the sampling method.

    CONCLUSION: This study expanded the current knowledge in the psychological health domain (intolerance of uncertainty, anxiety, depression, and stress) due to the COVID-19 pandemic. In practice, higher education institutions should further mitigate university students' mental health issues. For researchers, our findings inspire future studies to delve into the relationship between IOU and mental health issues due to COVID-19 since our findings display contrary evidence for various reasons.

  15. Alotaibi MO, Alotaibi NM, Ghoneim AM, Ain NU, Irshad MA, Nawaz R, et al.
    Chemosphere, 2023 Oct;339:139731.
    PMID: 37557994 DOI: 10.1016/j.chemosphere.2023.139731
    Recently, there has been considerable attention towards the production of environmentally friendly nanoparticles (NPs). In this investigation, the successful synthesis of cerium oxide nanoparticles (CeO2 NPs) was achieved by employing an eco-friendly technique that utilized an extract from the leaves of local plant quinoa (Chenopodium quinoa L.). The synthesized CeO2 NPs were subjected to characterization using state-of-the-art methods. The prepared CeO2 NPs contained a round shape with clusters and have a size of 7-10 nm. To assess how effective CeO2 NPs derived from C. quinoa were against Ustilago tritici, a fungal disease that negatively affects wheat crop globally, a study was performed on two varieties of wheat crop comprised of Arooj (V1) and Akber (V2), cultivated under field conditions. CeO2 NPs were applied foliarly twice to the wheat crop at four different concentrations: T0 (0 mg/L), T1 (50 mg/L), T2 (75 mg/L), and T3 (100 mg/L). The results revealed that the control group (T0) exhibited the highest disease severity index (DSI) with a value of 75% compared to the other concentrations of CeO2 NPs on both varieties. At a concentration of 100 mg/L of CeO2 NPs, the DSI dropped to a minimum of 35% and 37% on both V1 and V2 respectively. These findings indicated that an increase in the concentration of CeO2 NPs has a beneficial impact on disease severity. Similar patterns have also been observed with disease incidence (DI), with the greatest efficacy observed at a concentration of 100 mg/L of CeO2 NPs. Our investigation has shown that CeO2 NPs exhibitd significant antifungal potential against U. tritici which may be a promising strategy to mitigate fungal disease and crop losses globally.
  16. Begum S, Firdous S, Naeem Z, Chaudhry GE, Arshad S, Abid F, et al.
    Trop Life Sci Res, 2023 Sep;34(3):129-149.
    PMID: 37860095 DOI: 10.21315/tlsr2023.34.3.7
    In present study, Water Quality Index (WQI) has been assessed of the Rawal Lake which is a major source of drinking water for people in the Federal Capital, Islamabad, and its adjacent city Rawalpindi in Pakistan. For this, the principal component analysis (PCA) and WQI were applied as an integrated approach to quantitatively explore difference based on spatial variation in 11 water quality parameters of the five major feeding tributaries of the Rawal Lake, Pakistan. The results of temperature in water, total dissolved solids, pH, electrical conductivity, chlorides and sulfates were well within the allowable World Health Organisation's (WHO) limits. However, the heavy metals like cadmium and lead were above permissible limits by the WHO in tributaries of Bari Imam and Rumli. Moreover, this has been proven by the Pearson correlation which suggested strong positive correlation (0.910*) between lead and cadmium. The results of present study were subjected to statistical analysis, i.e., PCA which gave three major factors contributing 96.5% of the total variance. For factor 1, pH, TDS, alkalinity, chlorides, sulfates and zinc have highest factor loading values (>0.60) and presented that these parameters were among the most significant parameters of first factor. As per the WQI results, the water was categorised in two major classes indicating that water of Bari Imam and Rumli is highly contaminated with heavy metals and totally unsuitable for drinking purposes. Based on the results of the present study, it is suggested to make heavy metals consideration as an integrated component in future planning for maintaining water quality of the Rawal Lake and its tributaries.
  17. Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, et al.
    Heliyon, 2023 Nov;9(11):e21737.
    PMID: 38027659 DOI: 10.1016/j.heliyon.2023.e21737
    Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
  18. Mallhi TH, Salman M, Khan YH, Khan FU, Butt MH, Ung COL, et al.
    Front Pediatr, 2023;11:1298691.
    PMID: 38078334 DOI: 10.3389/fped.2023.1298691
  19. Mohamad Bakro R, Farrukh MJ, Rajagopal MS, Kristina SA, Ramatillah DL, Ming LC, et al.
    Ann Med, 2023;55(2):2281655.
    PMID: 38010360 DOI: 10.1080/07853890.2023.2281655
    BACKGROUND: Menstruation is a natural phenomenon considered an important indicator of women's health, reflecting their endocrine function. Women in low middle income countries face substantial menstrual hygiene management challenges. Data on the knowledge of dysmenorrhea and health-related practices among Malaysian women are scarce. The present study aimed to investigate the prevalence of dysmenorrhea among Malaysian women in Kuala Lumpur and its association with socio-demographic factors, knowledge level, and general practices.

    METHOD: A cross-sectional study was carried out among Malaysian women in Kuala Lumpur. A total of 362 unmarried women, nulliparous and aged between 18 and 25 years old, were included in this study. Participants were conveniently recruited through online platforms as well as face to face using a self-administered questionnaire with five sections consisting of demographics, menstrual characteristics, Working ability, Location, Intensity, Days of pain, Dysmenorrhea (WaLIDD) score for diagnosing and assessing the severity of dysmenorrhea as well as an evaluation of respondents' general knowledge and practices towards dysmenorrhea. The collected data were analysed using the SPSS tool, a descriptive statistic was used to report demographic characteristics. Inferential statistics was used to report the differentiation, association, and correlations of the variables.

    RESULTS: The prevalence of primary dysmenorrhea was 73.2%. It was found that the majority of the respondents had poor knowledge (60%) and poor practices (61.88%) of dysmenorrhea. The most common preventive practices among the respondents were using dietary supplements, and herbs, taking a rest and exercising. The findings also indicated that dysmenorrhea among the respondents was significantly associated with family history of dysmenorrhea (p = 0.002), monthly income (p = 0.001), and knowledge level (p = 0.001).

    CONCLUSION: Dysmenorrhea has a high prevalence among women in Malaysia in Kula Lumpur driven by low knowledge and lack of evidence-based practices among these women. Thus, it is critical for Government and healthcare authorities to promote education related to women health among Malaysian women.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links