Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Larki F, Dehzangi A, Md Ali SH, Jalar A, Islam MS, Hamidon MN, et al.
    PLoS One, 2014;9(4):e95182.
    PMID: 24743692 DOI: 10.1371/journal.pone.0095182
    This paper examines the impact of two important geometrical parameters, namely the thickness and source/drain extensions on the performance of low doped p-type double lateral gate junctionless transistors (DGJLTs). The three dimensional Technology Computer-Aided Design simulation is implemented to calculate the characteristics of the devices with different thickness and source/drain extension and based on that, the parameters such as threshold voltage, transconductance and resistance in saturation region are analyzed. In addition, simulation results provide a physical explanation for the variation of device characteristics given by the variation of geometric parameters, mainly based on investigation of the electric field components and the carries density variation. It is shown that, the variation of the carrier density is the main factor which affects the characteristics of the device when the device's thickness is varied. However, the electric field is mainly responsible for variation of the characteristics when the source/drain extension is changed.
  2. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
  3. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Drug Des Devel Ther, 2013;7:1365-75.
    PMID: 24255593 DOI: 10.2147/DDDT.S50665
    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.
  4. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Dorniani D, Webster TJ
    Int J Nanomedicine, 2014;9:351-62.
    PMID: 24453486 DOI: 10.2147/IJN.S53847
    Iron oxide magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of iron salts in sodium hydroxide followed by coating separately with chitosan (CS) and polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs nanoparticles, respectively. They were then loaded with kojic acid (KA), a pharmacologically bioactive natural compound, to form KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The MNPs and their nanocomposites were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. The powder X-ray diffraction data suggest that all formulations consisted of highly crystalline, pure magnetite Fe3O4. The Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed the presence of both polymers and KA in the nanocomposites. Magnetization curves showed that both nanocomposites (KA-CS-MNPs and KA-PEG-MNPs) were superparamagnetic with saturation magnetizations of 8.1 emu/g and 26.4 emu/g, respectively. The KA drug loading was estimated using ultraviolet-visible spectroscopy, which gave a loading of 12.2% and 8.3% for the KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The release profile of the KA from the nanocomposites followed a pseudo second-order kinetic model. The agar diffusion test was performed to evaluate the antimicrobial activity for both KA-CS-MNPs and KA-PEG-MNPs nanocomposites against a number of microorganisms using two Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Salmonella enterica) species, and showed some antibacterial activity, which could be enhanced in future studies by optimizing drug loading. This study provided evidence for the promise for the further investigation of the possible beneficial biological activities of KA and both KA-CS-MNPs and KA-PEG-MNPs nanocomposites in nanopharmaceutical applications.
  5. Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Hussein MZ, Dorniani D
    J Biomater Appl, 2014 Jan 19;29(2):186-198.
    PMID: 24445774
    Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg-CS-MNP and Arg-PEG-MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg-CS-MNP and Arg-PEG-MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV-vis measurements, which yielded values of 5.5% and 11% for the Arg-CS-MNP and Arg-PEG-MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg-CS-MNP and Arg-PEG-MNP nanocomposites reduced the cancer cell viability with IC50 values of 48.6 and 42.6 µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells.
  6. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
  7. Barahuie F, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2013;8:1975-87.
    PMID: 23737666 DOI: 10.2147/IJN.S42718
    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: "PANE" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and "PAND" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.
  8. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Chem Cent J, 2013;7(1):72.
    PMID: 23601852 DOI: 10.1186/1752-153X-7-72
    Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6-24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB.
  9. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Nanomedicine, 2012;7:2129-41.
    PMID: 22619549 DOI: 10.2147/IJN.S30461
    The intercalation of perindopril erbumine into Zn/Al-NO(3)-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.
  10. Hussein-Al-Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Mol Sci, 2012;13(5):5899-916.
    PMID: 22754339 DOI: 10.3390/ijms13055899
    The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs) and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR) study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.
  11. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Nanomedicine, 2012;7:4251-62.
    PMID: 22904631 DOI: 10.2147/IJN.S32267
    The intercalation of a drug active, perindopril, into Mg/Al-layered double hydroxide for the formation of a new nanocomposite, PMAE, was accomplished using a simple ion exchange technique. A relatively high loading percentage of perindopril of about 36.5% (w/w) indicates that intercalation of the active took place in the Mg/Al inorganic interlayer. Intercalation was further supported by Fourier transform infrared spectroscopy, and thermal analysis shows markedly enhanced thermal stability of the active. The release of perindopril from the nanocomposite occurred in a controlled manner governed by pseudo-second order kinetics. MTT assay showed no cytotoxicity effects from either Mg/Al-layered double hydroxide or its nanocomposite, PMAE. Mg/Al-layered double hydroxide showed angiotensin-converting enzyme inhibitory activity, with 5.6% inhibition after 90 minutes of incubation. On incubation of angiotensin-converting enzyme with 0.5 μg/mL of the PMAE nanocomposite, inhibition of the enzyme increased from 56.6% to 70.6% at 30 and 90 minutes, respectively. These results are comparable with data reported in the literature for Zn/Al-perindopril.
  12. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:3099-111.
    PMID: 22163163 DOI: 10.2147/IJN.S24510
    A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers.
  13. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Bullo S
    Drug Des Devel Ther, 2013;7:25-31.
    PMID: 23345969 DOI: 10.2147/DDDT.S37070
    The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors.
  14. El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ
    Int J Nanomedicine, 2015;10:3269-74.
    PMID: 25995633 DOI: 10.2147/IJN.S74469
    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.
  15. Kohno A, Dahlui M, Nik Farid ND, Ali SH, Nakayama T
    BMJ Open, 2019 09 03;9(9):e027377.
    PMID: 31481551 DOI: 10.1136/bmjopen-2018-027377
    OBJECTIVE: To examine individual, familial, community and societal issues surrounding the reasons for child marriage in Kelantan, Malaysia.

    DESIGN: Qualitative study by means of semistructured interviews with women and key informants, using social-ecological model as a conceptual framework.

    SETTING: Interviews were conducted in Kota Bharu district, Kelantan, a northeast state in Peninsular Malaysia.

    PARTICIPANTS: Eighteen women of reproductive age (18 to 44 years old) that experienced their first marriage below the age of 18, as well as five key informants, consisting of a government officer, a community leader, an officer from religious department and two mothers. The women were recruited from a reproductive health clinic. The key informants who had specialised knowledge related to child marriage were selectively chosen.

    RESULTS: Three themes emerged that aligned with the social-ecological model: immaturity in decision-making, family poverty and religious and cultural norms.

    CONCLUSIONS: The findings imply that sex education and awareness-building activities regarding the consequences of child marriage must be implemented to eradicate child marriage in Malaysia. Such implementation must be coordinated as a team-based approach involving experts in such fields as law, religion, psychology, social-welfare and public health. In order to increase the awareness of child marriage consequences, the target for awareness must extend not only to the adolescent girls and their families, but also to the community and society at large by clearly communicating the negative consequences of and addressing the drivers for child marriage.

  16. Ying K, Rostenberghe HV, Kuan G, Mohd Yusoff MHA, Ali SH, Yaacob NS
    PMID: 33670850 DOI: 10.3390/ijerph18052351
    Caregiving for children with cerebral palsy (CP) has proved to negatively impact on the physical and psychological well-being of their primary caregivers. The aim of the current study was to examine the overall impact of caregiving for children with CP on the primary caregivers' health-related quality of life (HRQOL) and family functioning, and to identify potential factors associated with primary caregivers' HRQOL and family functioning. The cross-sectional study involved a total of 159 primary caregivers of children with CP with a mean age of 42.8 ± 8.4 years. Demographic data and information on the physical and leisure activities of the primary caregivers were collected, and their quality of life (QOL) was measured based on the self-reported Pediatric Quality of Life Inventory Family Impact Module (PedsQL FIM). Primary caregivers in the current study have shown good HRQOL and family functioning, with scores of 82.4 and 85.3 out of 100, respectively. Through multiple linear regression analyses, the mother's level of education, family monthly income, sleeping problems in children with CP, and the existence of children with other types of disability have been identified as factors contributing to HRQOL and family functioning. The findings help set out the course for stakeholders to establish action to enhance the QOL of primary caregivers.
  17. Mukherjee TI, Pillai V, Ali SH, Altice FL, Kamarulzaman A, Wickersham JA
    Int J Drug Policy, 2017 09;47:144-152.
    PMID: 28652072 DOI: 10.1016/j.drugpo.2017.05.041
    BACKGROUND: Approximately 40%-90% of people who inject drugs (PWID) in Malaysia have hepatitis C (HCV). PWID continue to be disproportionately affected by HCV due to their lack of knowledge, perceived risk and interest in HCV treatment. Education interventions may be an effective strategy for increasing HCV knowledge in PWID, and harm reduction services are uniquely positioned to implement and deploy such interventions.

    METHODS: We recruited 176 clients from methadone maintenance treatment (MMT: N=110) and needle/syringe programs (NSP: N=66) between November 2015 and August 2016. After baseline knowledge assessments, clients participated in a standardized, 45-min HCV education program and completed post-intervention knowledge assessments to measure change in knowledge and treatment interest.

    RESULTS: Participants were mostly male (96.3%), Malay (94.9%), and in their early 40s (mean=42.6years). Following the intervention, overall knowledge scores and treatment interest in MMT clients increased by 68% and 16%, respectively (p<0.001). In contrast, NSP clients showed no significant improvement in overall knowledge or treatment interest, and perceived greater treatment barriers. Multivariate linear regression to assess correlates of HCV knowledge post-intervention revealed that optimal dosage of MMT and having had an HIV test in the past year significantly increased HCV knowledge. Having received a hepatitis B vaccine, however, was not associated with increased HCV knowledge after participating in an education session.

    CONCLUSION: Generally, HCV knowledge and screening is low among clients engaged in MMT and NSP services in Malaysia. Integrating a brief, but comprehensive HCV education session within harm reduction services may be a low-cost and effective strategy in improving overall HCV knowledge and risk behaviors in resource-limited settings. In order to be an effective public health approach, however, education interventions must be paired with strategies that improve social, economic and political outcomes for PWID. Doing so may reduce HCV disparities by increasing screening and treatment interest.

  18. Ali SH, Ahmad Rahman NH, Mohd Shariff N, Karim J, Chin KY
    J Adv Nurs, 2021 Sep;77(9):3933-3939.
    PMID: 34028853 DOI: 10.1111/jan.14880
    AIMS: To determine the challenges perceived by final-year nursing students in the clinical learning environment.

    DESIGN: Data-based convergent mixed-method systematic review.

    METHODS: Three electronic databases (Web of Science, Scopus, and Cumulative Index to Nursing and Allied Health Literature) will be used in the identification stage. The first search will use the search string for each database to identify relevant studies. The articles retrieved will be screened by year of publication, article type and language. Abstracts and full-text of selected studies will be screened for eligibility independently by a minimum of two reviewers. The reference lists will be manually screened to identify additional publications. The quality assessment will be conducted by two reviewers using the Mixed Methods Appraisal Tools. Quantitative and mixed-method studies will be transformed into qualitative. A thematic approach will be used to synthesize and report the data. Ethics approval and funding have been approved in April 2020.

    DISCUSSION: This study will synthesize the types of challenges perceived by final-year undergraduate nursing students in different clinical learning environments across the country.

    IMPACT: The proposed study findings will help nursing education stakeholders and faculty provide assistance to final-year nursing students in their transition year to become registered nurses.

  19. Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM
    Polymers (Basel), 2020 Apr 01;12(4).
    PMID: 32244671 DOI: 10.3390/polym12040772
    The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (-9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm-1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956-0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.
  20. Abdul Wahab P, Mohd Yusoff D, Abdul Kadir A, Ali SH, Lee YY, Kueh YC
    PeerJ, 2020;8:e8581.
    PMID: 32175185 DOI: 10.7717/peerj.8581
    Background: Chronic constipation is a common symptom among the elderly, and it may affect their quality of life (QoL). A lack of available research focused on the elderly means that this effect is not well understood. This study aimed to develop and validate a new scale (Elderly-Constipation Impact Scale (E-CIS)) to measure the impact of chronic constipation on QoL among the elderly.

    Methods: A pool of items was generated from a qualitative study, literature reviews, and expert reviews. Exploratory factor analysis (EFA) was performed on the original 40 items of the E-CIS and followed by 27 items for confirmatory factor analysis (CFA). A total of 470 elderly people with chronic constipation were involved.

    Results: The mean age of the participants was 68.64 ± 6.57. Finally, only 22 items were indicated as appropriately representing the E-CIS, which were grouped into seven subscales: 'daily activities', 'treatment satisfaction', 'lack of control of bodily function', 'diet restriction', 'symptom intensity', 'anxiety' and 'preventive actions'. The scale was confirmed as valid (root mean square error of approximation (RMSEA) = 0.04, comparative fit index (CFI) = 0.961, Tucker-Lewis index (TLI) = 0.952 and chi-square/degree of freedom (chiSq/df) = 1.44) and reliable (Cronbach's alpha: 0.66-0.85, composite reliability (CR) = 0.699-0.851) to assess the impact of chronic constipation on the elderly's QoL.

    Conclusions: The E-CIS is useful to measure the impact of chronic constipation on the elderly's QoL. A further test is needed to determine the validity and reliability of this scale in other elderly population.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links