Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
  2. Cha TS, Yee W, Phua PSP, Loh SH, Aziz A
    Biotechnol Lett, 2021 Apr;43(4):803-812.
    PMID: 33438120 DOI: 10.1007/s10529-021-03077-2
    OBJECTIVE: The effects of a brief (3 days) and prolonged (6 days) period of incubation in darkness and light on the biomass content, lipid content and fatty acid profile in Chlorella vulgaris UMT-M1 were determined.

    RESULTS: Three days of incubation in darkness increased saturated fatty acid (SFA) content from 34.0 to 41.4% but decreased monounsaturated fatty acid (MUFA) content from 36.7 to 29.8%. Palmitic acid (C16:0) content was increased from 23.2 to 28.9%, whereas oleic acid (C18:1) content was reduced from 35.4 to 28.8%. Total oil content was slightly decreased from 20.4 to 18.7% after 3 days of darkness, without a significant reduction in biomass compared to 3 days of incubation in light. Biomass and oil content was highest in cultures incubated for 6 days in light, however the stimulatory and inhibitory effects of darkness (or light) on SFA and MUFA content was no longer present at 6 days of incubation.

    CONCLUSIONS: Findings from this study suggests that fatty acid composition in C. vulgaris could be modulated to favor either C16:0 or C18:1 by a brief period of either darkness or light incubation, prior to harvesting.

  3. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
  4. Afifudeen CLW, Loh SH, Wong LL, Aziz A, Takahashi K, Wahid MEA, et al.
    Data Brief, 2021 Dec;39:107607.
    PMID: 34869809 DOI: 10.1016/j.dib.2021.107607
    Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in M. gracile SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oil-inducing culture conditions. Present data consist of next generation RNA sequencing data of M. gracile SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and de novo assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in M. gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links