Displaying publications 21 - 40 of 284 in total

Abstract:
Sort:
  1. Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT
    Chem Phys Lipids, 2023 Sep;255:105315.
    PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315
    Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
  2. Jain N, Nagaich U, Pandey M, Chellappan DK, Dua K
    EPMA J, 2022 Dec;13(4):561-580.
    PMID: 36505888 DOI: 10.1007/s13167-022-00304-2
    In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today's clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person's genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down's syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.
  3. Gorajana A, Rajendran A, Yew LM, Dua K
    Int J Pharm Investig, 2015;5(3):171-8.
    PMID: 26258059 DOI: 10.4103/2230-973X.160857
    AIM: The objective of the current study is to increase the dissolution rate of cefuroxime axetil (CA) by formation of binary CA solid dispersion using water soluble carriers such as polyvinylpyrrolidone (PVP K30) and polyethylene glycol (PEG 4000).

    METHODS: Solid dispersions (SDs) between CA and PVP K30/PEG 4000 were formed by dissolving both compounds in a common solvent, methanol, which were rotary evaporated at 40°C for 12 h. Physical mixtures between CA and PVP K30/PEG 4000 were also formulated as to compare the efficiency of SDs. The physicochemical properties of CA and all its formulations were then characterized using differential scanning calorimetric analysis (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR).

    RESULTS: All SD formulations were found to have a higher dissolution rate comparatively to pure CA, while only physical mixtures of PVP K30 were found having a significantly higher dissolution rate. The enhancement of dissolution rate SD by PVP K30 may be caused by increase wettability, solubility, reduction in particle size or the formation of CA β crystalline. Increment of dissolution rate of CA SDs by PEG 4000 similarly may be caused by increase wettability, solubility, and reduction in particle size. This phenomenon may also be caused by amorphization as suggested by DSC and PXRD.

    CONCLUSIONS: The SD of CA with PVP K30 and PEG 4000, lends an ample credence for better therapeutic efficacy.

  4. Gupta G, Jia Jia T, Yee Woon L, Kumar Chellappan D, Candasamy M, Dua K
    Adv Pharmacol Sci, 2015;2015:164943.
    PMID: 26681936 DOI: 10.1155/2015/164943
    The present study was designed to evaluate the acute and chronic antidepressant effect of genistein in combination with amitriptyline in mice. Animals were divided into six groups (n = 6) for treatment with water, genistein, or amitriptyline, either alone or in combination for ten days. Animals were subjected to locomotor activity testing; tail suspension test (TST); and forced swim test (FST) and immobility time was recorded on day one and day ten. Acute treatment of all treatment groups did not significantly reduce the immobility time (p > 0.05). Chronic treatment of combination of genistein (10 mg/kg) and amitriptyline (5 mg/kg and 10 mg/kg) significantly reduced the immobility time as compared to control group (p < 0.001) and was comparable to amitriptyline alone (10 mg/kg). However, no changes in anti-immobility activity in combination of subeffective doses of genistein (5 mg/kg) and amitriptyline (5 mg/kg) were observed. Genistein at its standard dose (10 mg/kg) rendered synergistic effects in combination with subeffective dose of amitriptyline (5 mg/kg) and additive effects in combination with therapeutic dose of amitriptyline (10 mg/kg).
  5. Lyn LY, Sze HW, Rajendran A, Adinarayana G, Dua K, Garg S
    Acta Pharm, 2011 Dec;61(4):391-402.
    PMID: 22202198 DOI: 10.2478/v10007-011-0037-z
    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.
  6. Dua K, Sheshala R, Al-Waeli HA, Gupta G, Chellappan DK
    Recent Pat Drug Deliv Formul, 2015;9(3):257-61.
    PMID: 26051152
    Natural products like plants and its components have been in use for treatment and cure of diseases all around the globe from ancient times much before the discovery of the current modern drugs. These substances from the nature are well known to contain components which have therapeutic properties and can also behave as precursors for the synthesis of potential drugs. The beneficial results from herbal drugs are well reported where their popularity in usage has increased across the globe. Subsequently developing countries are now recognizing the many positive advantages from their use which has engaged the expansion of R & D from herbal research. The flow on effect from this expansion has increased the awareness to develop new herbal products and the processes, throughout the entire world. Mouth washes and mouth rinses which have plant oils, plant components or extracts have generated particular attention. High prevalence of gingival inflammation and periodontal diseases, suggests majority of the patients practice inadequate plaque control. Of the currently available mouthwashes in the market, Chlorhexidine gluconate (CHX) has been investigated on a larger scale with much detail. CHX is associated with side effects like staining of teeth when used daily as well as the bitter taste of the mouthwash which leads to patient incompliance. The present research encompasses the antibacterial activity of extemporaneously prepared herbal mouthwash using natural herbs and therefore allows for the potential commercialization with in the herbal and pharmaceutical industries. Also, the present research article reviewed details of various existing patents of herbal mouthwashes which shows the trend of existing market and significance of emerging mouthwashes in both pharmaceutical and herbal industries. The antimicrobial activity of prepared mouthwashes was found to be effective against various strains of bacteria. It also suggests that the prepared herbal mouthwashes may provide an alternative to those containing chemical entities, with enhanced antimicrobial properties and better patient compliance.
  7. Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(3):237-48.
    PMID: 26205681
    Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of new ophthalmic dosage forms for existing drugs to improve efficacy and bioavailability, patient compliance and convenience has become one of the main trend in the pharmaceuticals industry. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization and recent research in this area. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye are also covered in this review.
  8. Satija S, Mehta M, Sharma M, Prasher P, Gupta G, Chellappan DK, et al.
    Future Med Chem, 2020 09;12(18):1607-1609.
    PMID: 32589055 DOI: 10.4155/fmc-2020-0149
  9. Singh Y, Gupta G, Kazmi I, Al-Abbasi FA, Negi P, Chellappan DK, et al.
    Dermatol Ther, 2020 11;33(6):e13871.
    PMID: 32558055 DOI: 10.1111/dth.13871
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the primary causative organism in corona virus disease-19 (COVID-19) infections, is a novel member of the human coronavirus family which was first identified in Wuhan, China, towards the end of 2019. This letter reveals new vital missing links in our current understanding of the mechanisms that lead to cell death triggered by ferroptotic stress in COVID-19 infection. It further reveal the importance of homocysteine mediated trans-sulfuration pathway in COVID-19 infection. Hence, Vitamin B6, folic acid, and Vitamin B12 should be incorporated in the treatment regimen for SARS CoV-2 infections to suppress complications, as the virus mediates altered host cell metabolism.
  10. Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H
    Int J Biol Macromol, 2019 Dec 01;141:596-610.
    PMID: 31494160 DOI: 10.1016/j.ijbiomac.2019.09.023
    The most common cause of deaths due to cancers nowadays is lung cancer. The objective of this study was to prepare erlotinib loaded chitosan nanoparticles for their anticancer potential. To study the effect of formulation variables on prepared nanoparticles using central composite design. Erlotinib loaded chitosan nanoparticles were prepared by ionic gelation method using probe sonication technique. It was found that batch NP-7 has a maximum loading capacity and entrapment efficiency with a particle size (138.5 nm) which is ideal for targeting solid tumors. Analysis of variance was applied to the particle size, entrapment efficiency and percent cumulative drug release to study the fitting and the significance of the model. The batch NP-7 showed 91.57% and 39.78% drug release after 24 h in 0.1 N hydrochloric acid and Phosphate Buffer (PB) pH 6.8, respectively. The IC50 value of NP-7 evaluated on A549 Lung cancer cells was found to be 6.36 μM. The XRD of NP-7 displayed the existence of erlotinib in the amorphous pattern. The optimized batch released erlotinib slowly in comparison to the marketed tablet formulation. Erlotinib loaded chitosan nanoparticles were prepared successfully using sonication technique with suitable particle size, entrapment efficiency and drug release. The formulated nanoparticles can be utilized for the treatment of lung cancer.
  11. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
  12. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM
    Panminerva Med, 2018 Dec;60(4):230-231.
    PMID: 30563304 DOI: 10.23736/S0031-0808.18.03459-6
  13. Sunkara K, Allam VR, Shukla SD, Chellappan DK, Gupta G, MacLoughlin R, et al.
    EXCLI J, 2021;20:248-251.
    PMID: 33628161 DOI: 10.17179/excli2021-3322
  14. Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, et al.
    Expert Opin Drug Deliv, 2020 12;17(12):1737-1765.
    PMID: 32878492 DOI: 10.1080/17425247.2020.1819237
    Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
  15. Paudel KR, Wadhwa R, Mehta M, Chellappan DK, Hansbro PM, Dua K
    Toxicol In Vitro, 2020 Oct;68:104961.
    PMID: 32771431 DOI: 10.1016/j.tiv.2020.104961
    Airway inflammation and infections are the primary causes of damage in the airway epithelium, that lead to hypersecretion of mucus and airway hyper-responsiveness. The role of reactive oxygen species (ROS) and their components in the pathophysiological mechanisms of airway inflammation have been well-studied and emphasized for the past several decades. Rutin, a potent bioflavonoid, is well-known for its antioxidant, anti-inflammatory, especially in bronchial inflammation. However, poor solubility and rapid metabolism have led to its low bioavailability in biological systems, and hence limit its application. The present study aims to investigate the beneficial effects of rutin-loaded liquid crystalline nanoparticles (LCNs) against lipopolysaccharide (LPS) induced oxidative damage in human bronchial epithelial cell line (BEAS-2-B) cells in vitro. LPS was used to stimulate BEAS-2-B cells, causing the generation of nitric oxide (NO) and other reactive oxygen species (ROS) that had led to cellular apoptosis. The levels of NO and ROS were detected by, Griess reagent kit and dichlorodihydrofluorescein diacetate (DCFH-DA) respectively, whereas, cell apoptosis was studied by Annexin V-FITC and PI staining. The findings revealed that rutin-loaded LCNs significantly reduced NO, ROS levels and prevented apoptosis in BEAS-2B cells. The observations and findings provide a mechanistic understanding of the effectiveness of rutin-loaded LCNs in protecting the bronchial cells against airway inflammation, thus possessing a promising therapeutic option for the management of airway diseases.
  16. Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I
    Expert Opin Ther Pat, 2020 May;30(5):375-387.
    PMID: 32178542 DOI: 10.1080/13543776.2020.1741547
    Introduction: Pulmonary route is one of the preferred routes for the administration of therapeutically active agents for systemic as well as localized delivery. Chronic obstructive pulmonary disease (COPD), bronchial asthma, pneumonia, pulmonary hypertension, bronchiolitis, lung cancer, and tuberculosis are the major chronic diseases associated with the pulmonary system. Knowledge about the affecting factors, namely, the etiology, pathophysiology, and the various barriers (mechanical, chemical, immunological, and behavioral) in pulmonary drug delivery is essential to develop an effective drug delivery system. Formulation strategies and mechanisms of particle deposition in the lungs also play an important role in designing a suitable delivery system.Areas covered: In the present paper, various drug delivery strategies, viz. nanoparticles, microparticles, liposomes, powders, and microemulsions have been discussed systematically, from a patent perspective.Expert opinion: Patent publications on formulation strategies have been instrumental in the evolution of new techniques and technologies for safe and effective treatment of pulmonary diseases. New delivery systems are required to be simple/reproducible/scalable/cost-effective scale for manufacturing ability and should be safe/effective/stable/controllable for meeting quality and regulatory compliance.
  17. Mehta M, Chellappan DK, Wich PR, Hansbro NG, Hansbro PM, Dua K
    Future Med Chem, 2020 06;12(11):987-990.
    PMID: 32270706 DOI: 10.4155/fmc-2020-0066
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links