Displaying publications 21 - 40 of 103 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):401.
    PMID: 28286414 DOI: 10.1140/epjc/s10052-016-4219-1
    A measurement of the W boson pair production cross section in proton-proton collisions at [Formula: see text] TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4[Formula: see text]. The [Formula: see text] candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured [Formula: see text] cross section is [Formula: see text], consistent with the standard model prediction. The [Formula: see text] cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95 % confidence level intervals are [Formula: see text], [Formula: see text], [Formula: see text], in the HISZ basis.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2017 Mar 24;118(12):122301.
    PMID: 28388204 DOI: 10.1103/PhysRevLett.118.122301
    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4
  3. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):379.
    PMID: 28280447 DOI: 10.1140/epjc/s10052-016-4105-x
    Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
  4. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):325.
    PMID: 28280439 DOI: 10.1140/epjc/s10052-016-4156-z
    A measurement of the forward-backward asymmetry [Formula: see text] of oppositely charged lepton pairs ([Formula: see text] and [Formula: see text]) produced via [Formula: see text] boson exchange in pp collisions at [Formula: see text] [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 19.7[Formula: see text] collected with the CMS detector at the LHC. The measurement of [Formula: see text] is performed for dilepton masses between 40[Formula: see text] and 2[Formula: see text] and for dilepton rapidity up to 5. The [Formula: see text] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
  5. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(5):237.
    PMID: 28280427 DOI: 10.1140/epjc/s10052-016-4067-z
    A search for a massive resonance [Formula: see text]decaying into a W and a Higgs boson in the [Formula: see text] ([Formula: see text], [Formula: see text]) final state is presented. Results are based on data corresponding to an integrated luminosity of 19.7[Formula: see text] of proton-proton collisions at [Formula: see text] [Formula: see text], collected using the CMS detector at the LHC. For a high-mass ([Formula: see text]1[Formula: see text]) resonance, the two bottom quarks coming from the Higgs boson decay are reconstructed as a single jet, which can be tagged by placing requirements on its substructure and flavour. Exclusion limits at 95 % confidence level are set on the production cross section of a narrow resonance decaying into WH, as a function of its mass. In the context of a little Higgs model, a lower limit on the [Formula: see text] mass of 1.4[Formula: see text] is set. In a heavy vector triplet model that mimics the properties of composite Higgs models, a lower limit on the [Formula: see text] mass of 1.5[Formula: see text] is set. In the context of this model, the results are combined with related searches to obtain a lower limit on the [Formula: see text] mass of 1.8[Formula: see text], the most restrictive to date for decays to a pair of standard model bosons.
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(10):536.
    PMID: 28316485 DOI: 10.1140/epjc/s10052-016-4346-8
    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2[Formula: see text]. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7[Formula: see text]. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(2):92.
    PMID: 28331430 DOI: 10.1140/epjc/s10052-016-4573-z
    The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at [Formula: see text] collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8[Formula: see text]. The W bosons are reconstructed via their leptonic decays, [Formula: see text], where [Formula: see text] or [Formula: see text]. The fiducial region studied contains exactly one lepton with transverse momentum [Formula: see text] and pseudorapidity [Formula: see text], with exactly two b jets with [Formula: see text] and [Formula: see text] and no other jets with [Formula: see text] and [Formula: see text]. The cross section is measured to be [Formula: see text]+[Formula: see text], in agreement with standard model predictions.
  8. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(3):172.
    PMID: 28408859 DOI: 10.1140/epjc/s10052-017-4718-8
    The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
  9. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys. Rev. Lett., 2017 Apr 21;118(16):162301.
    PMID: 28474955 DOI: 10.1103/PhysRevLett.118.162301
    The relative modification of the prompt ψ(2S) and J/ψ yields from pp to PbPb collisions, at the center-of-mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0  pb^{-1} and 464  μb^{-1}, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N_{ψ(2S)}/N_{J/ψ})_{PbPb}/(N_{ψ(2S)}/N_{J/ψ})_{pp}, is determined as a function of PbPb collision centrality and charmonium transverse momentum p_{T}, in two kinematic intervals: |y|<1.6 covering 6.5J/ψ yield in the explored phase space.
  10. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(5):294.
    PMID: 28579921 DOI: 10.1140/epjc/s10052-017-4787-8
    A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13[Formula: see text]. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3[Formula: see text]. Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975[Formula: see text] are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400[Formula: see text] are excluded.
  11. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):252.
    PMID: 28515669 DOI: 10.1140/epjc/s10052-017-4781-1
    The nuclear modification factor [Formula: see text] and the azimuthal anisotropy coefficient [Formula: see text] of prompt and nonprompt (i.e. those from decays of b hadrons) [Formula: see text] mesons, measured from PbPb and pp collisions at [Formula: see text] [Formula: see text] at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta [Formula: see text] [Formula: see text] and rapidity [Formula: see text], extending down to [Formula: see text] [Formula: see text] in the [Formula: see text] range. The [Formula: see text] of prompt [Formula: see text] is found to be nonzero, but with no strong dependence on centrality, rapidity, or [Formula: see text] over the full kinematic range studied. The measured [Formula: see text] of nonprompt [Formula: see text] is consistent with zero. The [Formula: see text] of prompt [Formula: see text] exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or [Formula: see text] in the fiducial range. The nonprompt [Formula: see text] [Formula: see text] shows a suppression which becomes stronger as rapidity or [Formula: see text] increases. The [Formula: see text] and [Formula: see text] of open and hidden charm, and of open charm and beauty, are compared.
  12. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(4):269.
    PMID: 28515672 DOI: 10.1140/epjc/s10052-017-4828-3
    This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production.
  13. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):236.
    PMID: 28515665 DOI: 10.1140/epjc/s10052-017-4730-z
    The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
  14. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):460.
    PMID: 28747851 DOI: 10.1140/epjc/s10052-016-4292-5
    Results are reported from a search for the pair production of top squarks, the supersymmetric partners of top quarks, in final states with jets and missing transverse momentum. The data sample used in this search was collected by the CMS detector and corresponds to an integrated luminosity of 18.9[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] produced by the LHC. The search features novel background suppression and prediction methods, including a dedicated top quark pair reconstruction algorithm. The data are found to be in agreement with the predicted backgrounds. Exclusion limits are set in simplified supersymmetry models with the top squark decaying to jets and an undetected neutralino, either through a top quark or through a bottom quark and chargino. Models with the top squark decaying via a top quark are excluded for top squark masses up to 755[Formula: see text] in the case of neutralino masses below 200[Formula: see text]. For decays via a chargino, top squark masses up to 620[Formula: see text] are excluded, depending on the masses of the chargino and neutralino.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):317.
    PMID: 28775662 DOI: 10.1140/epjc/s10052-016-4149-y
    A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
  16. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys. Rev. Lett., 2017 Oct 06;119(14):141802.
    PMID: 29053305 DOI: 10.1103/PhysRevLett.119.141802
    A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
  17. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(5):327.
    PMID: 28943785 DOI: 10.1140/epjc/s10052-017-4853-2
    Searches are presented for direct production of top or bottom squark pairs in proton-proton collisions at the CERN LHC. Two searches, based on complementary techniques, are performed in all-jet final states that are characterized by a significant imbalance in transverse momentum. An additional search requires the presence of a charged lepton isolated from other activity in the event. The data were collected in 2015 at a centre-of-mass energy of 13[Formula: see text] with the CMS detector and correspond to an integrated luminosity of 2.3[Formula: see text]. No statistically significant excess of events is found beyond the expected contribution from standard model processes. Exclusion limits are set in the context of simplified models of top or bottom squark pair production. Models with top and bottom squark masses up to 830 and 890[Formula: see text], respectively, are probed for light neutralinos. For models with top squark masses of 675[Formula: see text], neutralino masses up to 260[Formula: see text] are excluded at 95% confidence level.
  18. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(7):459.
    PMID: 28943791 DOI: 10.1140/epjc/s10052-017-4984-5
    Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
  19. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(7):467.
    PMID: 28943793 DOI: 10.1140/epjc/s10052-017-5030-3
    The first measurement of the jet mass [Formula: see text] of top quark jets produced in [Formula: see text] events from pp collisions at [Formula: see text] [Formula: see text] is reported for the jet with the largest transverse momentum [Formula: see text] in highly boosted hadronic top quark decays. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the lepton+jets channel in which the products of the semileptonic decay [Formula: see text] with [Formula: see text] where [Formula: see text] is an electron or muon, are used to select [Formula: see text] events with large Lorentz boosts. The products of the fully hadronic decay [Formula: see text] with [Formula: see text] are reconstructed using a single Cambridge-Aachen jet with distance parameter [Formula: see text], and [Formula: see text] [Formula: see text]. The [Formula: see text] cross section as a function of [Formula: see text] is unfolded at the particle level and is used to test the modelling of highly boosted top quark production. The peak position of the [Formula: see text] distribution is sensitive to the top quark mass [Formula: see text], and the data are used to extract a value of [Formula: see text] to assess this sensitivity.
  20. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(5):354.
    PMID: 28943789 DOI: 10.1140/epjc/s10052-017-4912-8
    A measurement of the top quark mass is reported in events containing a single top quark produced via the electroweak t channel. The analysis is performed using data from proton-proton collisions collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb[Formula: see text]. Top quark candidates are reconstructed from their decay to a [Formula: see text] boson and a b quark, with the [Formula: see text] boson decaying leptonically to a muon and a neutrino. The final state signature and kinematic properties of single top quark events in the t channel are used to enhance the purity of the sample, suppressing the contribution from top quark pair production. A fit to the invariant mass distribution of reconstructed top quark candidates yields a value of the top quark mass of [Formula: see text]. This result is in agreement with the current world average, and represents the first measurement of the top quark mass in event topologies not dominated by top quark pair production, therefore contributing to future averages with partially uncorrelated systematic uncertainties and a largely uncorrelated statistical uncertainty.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links